
1

RetroFab: A Design Tool for Retrofitting Physical
Interfaces using Actuators, Sensors and 3D Printing

Raf Ramakers†*, Fraser Anderson†, Tovi Grossman†, George Fitzmaurice†
†Autodesk Research; *Hasselt University – tUL - iMinds

†Toronto, ON, Canada; *Hasselt, Belgium

†{first.last}@autodesk.com; *raf.ramakers@uhasselt.be

ABSTRACT
We present RetroFab, an end-to-end design and fabrication
environment that allows non-experts to retrofit physical
interfaces. Our approach allows for changing the layout and
behavior of physical interfaces. Unlike customizing software
interfaces, physical interfaces are often challenging to adapt
because of their rigidity. With RetroFab, a new physical
interface is designed that serves as a proxy interface for the
legacy controls that are now operated by actuators. RetroFab
makes this concept of retrofitting devices available to non-
experts by automatically generating an enclosure structure
from an annotated 3D scan. This enclosure structure holds
together actuators, sensors as well as components for the
redesigned interface. To allow retrofitting a wide variety of
legacy devices, the RetroFab design tool comes with a toolkit
of 12 components. We demonstrate the versatility and novel
opportunities of our approach by retrofitting five domestic
objects and exploring their use cases. Preliminary user
feedback reports on the experience of retrofitting devices
with RetroFab.

Author Keywords
Fabrication; Augmentation; Physical Interface; Reverse
Engineering

ACM Classification Keywords
H.5.2 [Information interfaces and presentation]: User
Interfaces

INTRODUCTION
Popular computing devices, such as desktops and
smartphones are easy to interconnect and their graphical user
interface can be adapted to changing user needs. In contrast,
devices and appliances such as ovens, thermostats and
toasters, are often designed to be static and non-adaptive.
Although smart versions of these appliances have become
available [30,31] and advancements in sensing technologies
for the Internet of Things [12,18] have started

Figure 1: Retrofitting a legacy toaster with RetroFab. (a)
The toaster is scanned, (b) the legacy interface is annotated,
(c) the attached enclosure is generated, (d) the physical
interface and behavior of the retrofit interface is adapted,
(e) the enclosure is fabricated and assembled, (f) the new
retrofit toaster is perfectly toasting.

to enable basic forms of interconnectivity, they do so at the
expense of increased costs or permanent structural changes
[4]. Additionally, users have to purchase a new smart device
to replace their existing legacy device even though it may
still be completely functional.

The tangibility and rigidity of these legacy devices make it
hard for an end user to change the user interface, as one may
do with software applications through plug-ins, reverse
engineering [7], or runtime toolkit overloading [10]. For
instance, it is not feasible to resolve design mistakes or adapt
an interface to users’ evolving or custom needs (e.g.,
impaired users).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for
components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
CHI'16, May 07-12, 2016, San Jose, CA, USA
© 2016 ACM. ISBN 978-1-4503-3362-7/16/05�$15.00
DOI: http://dx.doi.org/10.1145/2858036.2858485

2

To make changes to legacy infrastructures and allow for
interconnectivity, one can retrofit the physical user
interfaces, for example, to augment light switches [32] and
dials [33,34]. When retrofitting, a redesigned physical
component is placed over top of the original component, thus
serving as a proxy interface. Mechanical actuators are often
used to manipulate the original interface, while sensors
detect states of the device (e.g., via LED indicators). This
avoids the complications and risks of fully disassembling and
rewiring existing electronic components, and is akin to
customizing a software user interface without accessing or
modifying its source code [9].

Although these appliance specific retrofitting kits [32-34] are
easy to install, the redesigned interface that is now exposed
is static and cannot be reconfigured by novices to adapt to
personal or changing user needs. Davidoff et al. [8]
experimented with customizable retrofit interfaces using the
LEGO Mindstorms toolkit. However, the mechanisms had to
be manually designed and constructed, required precise
structures and brackets that fit over top of the appliances, and
did not provide a new physical interface for a user.

To enable users without a technical background in 3D
modelling, programming, or electronics to customize and
enhance devices and appliances, we present RetroFab, a
design tool that automates the process of retrofitting a
physical interface (Figure 1). From an annotated 3D scan of
an existing legacy object (Figure 1b), RetroFab
automatically generates circuitry, firmware and a physical
enclosure that precisely fits over top of the legacy interface
(Figure 1c-f). These enclosures house mechanical actuators
and sensing components to automatically control the device
and observe its state (e.g. sensing the state of an LED).

Similar to “smart” versions of appliances [30-31], retrofit
interfaces generated with RetroFab allow for automated
tasks, interconnected devices, remote control through a
companion mobile app, and analytics. Retrofit interfaces
designed with RetroFab also go beyond these standard
“smart” features by interconnecting multiple heterogeneous
devices, and enabling users to customize their layout and
behaviors.

The primary contributions of this paper are in the integrated
design and fabrication tool that enables custom refactoring
of physical interfaces. Specifically, we contribute:

(1) A mechatronic toolkit, consisting of 12 components,
optimized for actuating common controls used in household
objects and appliances. The toolkit exposes an easy plug-
and-play electronics interface to the user.

(2) An end-to-end design and fabrication tool that
automatically generates 3D printable enclosures that attach
RetroFab toolkit components to legacy devices.
Additionally, the tool assists users in the assembly process,
as well as the design of new proxy interfaces.

(3) The presentation of a set of sample objects generated
using RetroFab, and an exploration of some of the use cases
enabled by RetroFab.

Preliminary user feedback assesses the usability and utility
of RetroFab, and demonstrates the system’s ease of use.

RELATED WORK
This work draws from, and builds upon prior work in 3D
model generation, intercepting interactions with legacy
objects and design tools for sensor-based interactions. While
our work is also related to smart appliances and home
automation, a review of such literature is beyond the scope
of this work. We refer the reader to existing extensive
surveys on such topics [1,4,5,24].

Automating 3D Modeling and Fabrication Processes
The current popularity of 3D printing and digital fabrication
has led to a number of recent works in the HCI literature
related to modeling and fabrication processes.

Closest to our own work, a number of projects have
developed techniques to aid the construction of physical
objects that contain electronic or interactive components.
Makers’ Marks [21] is a system that allows users to create
complex physical objects that incorporate elements such as
hinges, parting lines and electronics using sculpting material
and stickers for annotation. Enclosed [28] is a software tool
that enables users to easily generate laser-cuttable enclosures
for electronic components. PipeDream [22] automatically
routes pipes through 3D models to allow for post hoc
insertion of conductive materials. Our work similarly aids
the fabrication of objects which can house electronic
components, but for the specific purpose of retrofitting an
existing physical interface.

We also build upon work that automates, simplifies, or
accelerates the design and fabrication process. For example,
Fabrickation [16] allows users to rapidly prototype
functional 3D objects by integrating LEGO blocks into the
design, thus reducing print time. Lau et al. provide a system
that decomposes 3D models of furniture into its constituent
components and connectors, allowing users to fabricate the
discrete elements [14]. RetroFab takes inspiration from this
line of research, automating the 3D modeling of the physical
enclosure which houses electronic components.

Also related to our work is the recent concept of fabricating
directly onto existing objects, or patching [25]. This can be
accomplished by placing the existing object on a 5 axis
rotating platform [25] or on a custom 3D printed support
stand [6]. MixFab [29] provides users with a mixed-reality
environment where they can incorporate real-world objects
into the design of virtual, 3D objects which can then be
fabricated, thus making it easier for users to design with
existing, tangible objects. RetroFab extends such work by
not only printing parts that fit onto existing physical objects,
but embedding electronic components which can retrofit an
existing object’s user interface.

3

Intercepting Interactions with Legacy Objects
Several researchers have developed novel sensing techniques
to provide interaction possibilities to existing objects without
dramatically modifying the original object. Touché [20] uses
swept-frequency capacitive sensing to detect users’ touches
and gestures on existing objects. Touch and activate uses a
similar approach but uses ultrasonic signals rather than
capacitive [17]. Patel et al. [18] describe a method for
detecting when appliances are powered on by unobtrusively
monitoring electrical noise within the home, opening up
possibilities for user-friendly sensing within a smart home.
ElectricSense [12] proposes a similar approach, but both of
these technologies are limited to sensing and provide no
actuation or control capabilities.

Davidoff et al. [8] introduced the idea of mechanical
hijacking – using motors to actuate existing controls. Their
work explored bespoke designs to actuate specific controls.
Recently, there have been several commercial products that
capitalize on mechanical hijacking, such as SwitchMate [32],
Meld [33], and Lockitron [34]. These devices fit over top of
existing light switches, oven knobs, and deadbolts to turn
existing controls into smart controls. While user-friendly and
easy to install, each device can only interface with a very
specific type of control. In contrast to these works, we
provide a complete design tool that allows users to easily
scan, annotate, and fabricate a new set of controls to retrofit
a wide variety of controls.

Design Tools for Sensor-Based Interactions
There are a number of products and research projects that
have enabled novices to build electronic devices, such as
Phidgets [11], littleBits [3], and .NET Gadgeteer [27]. These
plug-and-play devices are easy to use and provide a standard
set of compatible components. However, for novice users, it
is not always clear which components are required or
suitable for a given process, and many of these components
still require some programming or electronics knowledge.

Many methods and techniques have been proposed to allow
end users to program devices and smart objects more easily.
Using simple trigger-action mappings, IFTTT [35] allows
users to map events to actions (e.g., a user’s GPS location
can cause smart light bulbs to turn on or off). While simple,
this programming paradigm has been found to be suitable for
many of the home automation tasks users desire [26].

Ash et al. [2] describe a visual programming language based
on Scratch that allows users to program the functionality of
their smart objects. However, this requires the device to
already have smart functionality and support for their
language. Similarly, Modkit [15] allows users to program
Arduino microcontrollers using Scratch and a custom shield,
and Jigsaw [13] provides a visual programming language for
smart objects. These languages, however, still require users
to have some knowledge of programming and electronics
components to select the right components.

The Pulsation paradigm proposed in PaperPulse [19] allows
for more complex logic definition by supporting linear

regression mappings, in addition to mapping discrete triggers
and actions. Additionally, Pulsation supports programming
by demonstration, allowing for the construction of complex
logic rules without programming experience. However,
Pulsation was only implemented within the context of paper
circuit creation, which we extend to physical user interfaces
by centralizing the interpreter on a single PC and adding
networking support to facilitate intercommunication.

RETROFAB

Overview and Definitions
The key idea behind this work is to refactor physical
interfaces by mounting a redesigned proxy interface over top
of the existing form factor that is able to intercept user input
and redirect it to the original object using mechanical
actuators, while also intercepting device output and
redirecting it to the user (Figure 2).

We define the legacy interface as the target object which the
user wishes to modify. The legacy interface consists of one
or more components: legacy controls for input (e.g., buttons)
and legacy indicators for output (e.g., LEDs).

Figure 2: Overview of the retrofitting process. Sensors and
actuators are placed on the legacy interface, with new
controls and indicators placed on a new, retrofit interface.

RetroFab automatically generates a 3D enclosure structure
from an annotated 3D scan of the legacy interface. The
system allows the user to define retrofit controls and retrofit
indicators as the input and output components that make up
the new retrofit interface. A layer of actuators and sensors
are used to interface between the retrofit and legacy
interfaces.

Walkthrough: Refactoring a Toaster
The following walkthrough illustrates the process of
retrofitting a legacy interface using RetroFab (Figure 1). We
use the example of a toaster, and in later sections describe
additional functionality and use cases. For the toaster, the
legacy interface is composed of the various buttons (cancel,
bagel, defrost, and reheat), a dial for temperature control, a
lever to push the toast up and down, and a set of indication
LEDs.

4

The following example shows how RetroFab can be used to
intercept all interactions and add one extra button on the
toaster as a shortcut to a preferred setting – a defrost cycle to
thaw the bread, then a mild toasting.

Step 1: 3D Scanning and Annotating Controls
The user starts by 3D scanning the toaster using the Skanect
3D scanning software1 and a Microsoft Kinect. Before the
scan, the buttons and LEDs are highlighted by covering them
with tape to ensure their visibility even in low quality 3D
scans by novices (Figure 1a). The user loads the 3D model
in the RetroFab design tool and annotates the position of the
legacy controls and indicators using the brushes in the
toolbar on the left. The system contains one brush for every
type of supported legacy control and indicator (Figure 1b).

Step 2: Automated Enclosure Design
Once the annotations are finished, RetroFab positions the
housings for all actuators and sensors: linear actuators for the
pushbuttons and lever, stepper motors for dials and light
sensors for LEDs (Figure 3a). RetroFab highlights the region
that will be redesigned, and thus covered by the new physical
enclosure. The user extends this region to include the area
where the new shortcut button will be positioned (Figure 3b).

Figure 3: (a) The orange region depicts the enclosure region
that RetroFab derives based on the specified components.
(b) The user manually extends the region to have additional
space for the new shortcut button.

RetroFab responds by generating the 3D model of the
enclosure (Figure 1c). Finally, the user specifies the
preferred location of the mounting brackets (using a brush)
that attaches the enclosure structure to the toaster (Figure 4).

Figure 4: The mounting brackets allow the enclosure to
easily be added to or removed from a legacy object.

1 http://skanect.occipital.com

Step 3: Redesigning the Interface and Behavior
RetroFab automatically integrates a retrofit interface in the
front panel of the enclosure structure that serves as a proxy
for the legacy interface. If desired, the user can redesign this
front panel by repositioning the retrofit components or by
replacing them with alternative components available in the
toolbar. Figure 1d shows an additional pushbutton being
added to the toaster that will serve as a shortcut to the user’s
favorite toast setting.

By default, retrofit controls are configured to mirror the
actions of their associated legacy controls: pushing the new
retrofit defrost button on the enclosure structure will cause
the legacy defrost button on the toaster to be pushed.
Similarly, output is redirected from the toaster to the
enclosure structure: when the legacy LED representing the
defrost state on the toaster turns on, the corresponding
retrofit LED on the enclosure lights up.

The user can alter this default behavior or add extra logic for
new components using a Programming by Demonstration
paradigm [19]. Users demonstrate actions directly on top of
the 3D models of the respective retrofit components and can
also record functional relationships between these actions.
Figure 5 shows the user specifying the logic of the new
button on the toaster: If pressed, the lever goes down, and the
defrost button is pushed. Additionally, the user can specify
that when defrosting is finished (sensed by the LED next to
the defrost button), the toast goes back in for a second time
at a higher temperature, resulting in perfectly crisp toast!

Figure 5: The user manually specifies a logic rule using the
Pulsation engine to program the perfect toast setting.

Step 4: Fabrication and Assembly
When the design is complete, RetroFab generates: (1) STL
files to be printed out using a 3D printer (FDM printer for
our prototypes), (2) Microcontroller code that can be directly
uploaded to an Arduino platform, and (3) Assembly
instructions to guide users in connecting the actuators and
sensors to the microcontroller.

5

Figure 1e shows the assembled 3D printed enclosure and its
embedded actuators, sensors, and retrofit components.
Finally, the enclosure structure is attached to the toaster by
gluing the feet of the mounting brackets to the appliance
(Figure 1f). The mounting bracket is designed so that the
enclosure structure is easy to detach using screws, leaving
only the feet of the mounting brackets behind (Figure 1e).

Once the enclosure structure is attached, RetroFab guides the
user through a process to calibrate all the actuators and
sensors.

Step 5: Deployment
All logic defined using RetroFab runs on a central PC which
communicates continuously to the retrofit interface. This
makes it possible to reconfigure the behavior of devices at
run time and allow for interconnectivity. Figure 6 shows the
user linking the “snooze” button of his retrofitted alarm clock
to his personal “perfect toast” shortcut button on the toaster.

Figure 6: As all of a user’s retrofit objects share the same
workspace, they can be interconnected to link their
functionality and enable home automation tasks.

When the user launches the companion RetroFab mobile
application, all retrofitted devices are automatically loaded,
and display their functionalities to allow for remote control
(Figure 7).

Figure 7: All of the functionality of a retrofit interface is also
available in the companion Android application.

2 https://www.adafruit.com/products/1438

RetroFab Toolkit
To enable retrofitting a wide variety of devices, RetroFab
comes with a set of electrical and mechanical primitives to
retrofit common physical interface components, such as
pushbuttons, rotary dials, rocker and wall switches, and
LEDs.

Figure 8 shows the full RetroFab toolkit, consisting of (a)
actuators, (b) sensors, (c) controls, and (d) indicators. The
actuators and sensors are positioned inside the enclosure and
concealed, while the controls and indicators are positioned
on the outside of the surface, forming the retrofit interface.

For every component in the toolkit, the RetroFab design tool
has a specific component housing that is integrated in the
enclosure structure to facilitate assembly and ensure precise
positioning. This is particularly important for the actuators,
which operate the underlying legacy controls.

Figure 8: The RetroFab Toolkit; Left) actuators and
sensors; the white material of the dial and linear actuator is
the parametric component of the design which conforms to
the scanned control. Right) controls and indicators.

To make it possible for users without electronics knowledge
to use the RetroFab toolkit, wires have a color coding scheme
and integrate the necessary electronic components, such as
resistors, in them. Our toolkit is easiest to deploy using the
Adafruit Motor Shield2, which avoids complex H-bridge
electronic constructions. As such, components are connected
directly to the microcontroller by following instructions
provided in the RetroFab design tool, avoiding the need for
complex electronic wiring designs on breadboards.

Figure 9: Inside view of a) push actuator, b) wall switch
actuator and c) rocker switch actuator.

6

Our custom designed mechanical actuators use off-the-shelf
DC, servo, and stepper motors, in combination with 3D
printed transmission mechanisms, to achieve the desired
mechanical movement. Figure 9a shows how the pushbutton
actuator uses a threaded rod to convert rotational movement
of a geared DC motor to linear movement. A pressure sensor
is attached to the tip of the piston to reverse the motor when
the pressure on the push button reaches the calibrated value.
In contrast, the rocker switch and wall switch actuators use
micro servos and eccentric crank mechanisms (Figure 9b-c).

The components that make up legacy interfaces come in
different shapes and sizes and are often closely packed
together on control panels. Our actuators are therefore
designed to be as small as possible while still having
sufficient force. The width of our pushbutton actuator is
12mm (Figure 8), making it even possible to actuate legacy
controls that have that same distance between their center
points. Additionally, actuators are represented in RetroFab
by parametric 3D models, to allow them to scale to different
sizes and shapes (white material in Figure 8). RetroFab
adjusts the size of the rack used in the linear actuator, for
example, using information of the 3D scanned model.
Similarly, the parameters of the rotary dial actuator allow it
to take on the exact inverse shape of the knob of the dial in
the 3D scanned model.

To measure properties of controls that are not visible in the
3D scanned model, such as movement range of pushbuttons
and dials or brightness range of indicator LEDs, RetroFab
employs a calibration procedure. Once the user connects the
(temporary) calibration button to the microcontroller of the
retrofit interface after the fabrication and assembly phase, the
states of each actuator/sensor are calibrated one by one.
During this procedure, actuators/sensors are activated and
the user presses the calibration button when the
actuator/sensor is in the requested state e.g. on/off state for
light sensors observing indicator LEDs, min/max state or
discrete states for rotary dial actuators. The RetroFab UI
supports removing calibration samples and averaging
multiple samples.

Enclosures
RetroFab supports the design of two types of enclosures:
attached enclosures, which attach directly to the legacy
interface and remote enclosures, which can optionally house
the retrofit interface separately from the attached enclosure.
Below the design considerations for these two types of
enclosures are outlined. Once designed, the method for
specifying their behaviors are equivalent.

Attached Enclosures
Attached enclosures are computationally designed with
RetroFab and always consist of three layers that are printed
separately (Figure 11): (a) the feet of the mounting brackets,
(b) the back structure, and (c) the front panel.

The front panel of the enclosure structure consists of
component housings for attaching the retrofit controls and

indicators that define the new retrofit interface that is
exposed to end-users (Figure 11).

The back structure holds housings for components in place
inside the structure to precisely position the RetroFab
actuators and sensors. Figure 11 shows how rigid support
structures connect component housings inside the enclosure
design to the outside structure.

Last, the mounting brackets fit the curvature of the legacy
interface to ensure a sturdy connection. Figure 10 shows how
enclosure structures designed with RetroFab fit on devices
with different surface curvatures.

Figure 10: left) Mounting feet conform to the curved surface
of a desk lamp, right) the retrofit dial allows for greater
positioning accuracy when tuning the frequency of an alarm
clock radio.

This layered approach facilitates the assembly of retrofit
components on the front panel and back structure which are
later glued together. In contrast, the back structure is
mounted on top of the feet of the mounting brackets using
screws. This is enabled by the T-slot design inside the
mounting brackets (Figure 11). As a result, only the feet of
the mounting brackets need to be glued to the legacy device.
Afterwards, the enclosure structure can be easily removed
using the screws, leaving only the feet of the mounting
brackets behind (Figure 1e).

Figure 11: Exploded view of a RetroFab attached enclosure.
The mounting bracket (a) is bolted to the mounting feet,
which are glued to the legacy device. The back structure (b)
holds the motors and sensors which interact with the new
retrofit interface on the the front panel (c).

7

While adding the mounting brackets to the design, RetroFab
leaves a gap (approximately 1 cm) between the legacy
interface and the enclosure structure. This gap makes it easier
to mount the enclosure structure and allows the end-user to
observe the state of legacy components while calibrating the
actuators and sensors.

Remote Enclosures
RetroFab also allows users to optionally construct a remote
enclosure that is not mounted over top of the legacy interface.
These types of enclosures only consist of retrofit controls and
indicators and communicate wirelessly via a central PC to
actuators and sensors that are inside one or multiple attached
enclosures. Remote enclosures can be used to design remote
controls, reposition an interface to a more convenient
location, or introduce new controls to an environment.

To design a remote enclosure, the user loads in any hollow
3D model and adds RetroFab controls and indicators to the
front panel. RetroFab responds by integrating component
housings in the 3D model that will hold the retrofit controls
and indicators in place. Once the design of the remote
enclosure structure is finished, the user specifies the behavior
between the new retrofit interface and the actuators and
sensors in the associated attached enclosures.

Logic and Intercommunication
Besides redesigning the physical interface of legacy devices,
RetroFab can also change the behavior of devices. By
default, retrofit components on the front panel of the attached
enclosure structure mirror all actions to RetroFab actuators
behind them: controlling a RetroFab push button or dial on
the front panel causes similar actions on the original controls
using the RetroFab actuators behind these controls.
Similarly, output is redirected from the legacy indicators to
the enclosure structure using RetroFab sensors: a light
sensor, observing the state of an LED on the legacy device
redirects this state to an LED on the front panel.

The user can alter this default behavior, add extra logic, or
define logic of additional RetroFab components that were
added using the Pulsation programming by demonstration
technique [19]. With Pulsation, users define logic between
electronic components by demonstrating actions on top of
the respective components and record functional
relationships between these actions. The pulsation interpreter
supports both causal relationships (if-then rules) as well as
linear regressions (map-to rules).

In contrast to PaperPulse [19], where the Pulsation
interpreter runs independently on every microcontroller, here
the interpreter is modified to run on a central logic module
(i.e. Windows PC or microcontroller supporting .NET MF),
making intercommunication an inherent part of RetroFab.
The individual Arduino microcontrollers that control the
enclosure structures run a generic firmware that handles the
GPIO pins as well as the wireless communication. Even for

3 http://www.openscad.org

retrofitted devices that do not intercommunicate, user input
and sensor data from the retrofitted interface is first
transmitted from the Arduino microcontroller to the central
PC. This module then decides to turn on specific RetroFab
actuators and sensors, controlled by the same or a different
Arduino microcontroller. This approach makes it possible to
change the behavior and interconnect retrofitted devices
even after the design and fabrication is completed. Multiple
independent logic modules can be deployed to avoid single
points of failure.

IMPLEMENTATION
The RetroFab design tool is implemented using .NET/C# and
builds on the Meshmixer 3D modeling program [23]. The
companion mobile application was developed in Java for the
Android platform.

Computationally Generated Enclosure Designs
To attach enclosure structures, the automated design process
starts with a 3D scanned model that has user annotated
regions, specifying the type and position of legacy controls.
RetroFab loads and positions component housings related to
the annotated controls on top of the scanned model. When
components are closely packed together, RetroFab mitigates
overlaps between these housings by optimizing their
orientation. During this process, the system rotates the
intersecting housings one by one, around the normal vector
of the annotated region, until all overlaps are resolved. When
no solution is found or the process is interrupted by the user,
the housings can be manually repositioned

Once the housings of all components inside the enclosure
structure are correctly positioned (Figure 12a), RetroFab
generates the enclosure design. To support legacy interfaces
with different surface curvatures (Figure 10), an enclosure
structure is created by extruding the surface region of the 3D
scanned model, thus preserving its curvature. The average
orientation of the RetroFab actuators and sensors defines the
direction of extrusion. Defining the minimal surface region
for the extrusion involves the following steps. First, the
bounding box of the housing for every component is
projected onto the surface along the extrusion direction
(Figure 12b). Second, the surface curvature between each
component is sampled, resulting in another set of vertices.
Together with the vertices calculated in the first step, a mesh
of the convex hull is calculated using OpenSCAD3. All faces
inside this convex hull define the minimal surface region to
be extruded to enclose the housings for all RetroFab
actuators and sensors (Figure 12c).

When components are located on different sides of the
legacy interface, the minimal surface region required for the
extrusion can increase substantially (Figure 13a). In these
situations, the user can decide to have a separate attached
enclosure structure for some components (Figure 13b).

8

Figure 12: Computing the minimal surface region for the
extrusion of an enclosure model. (a) The component
housings, (b) the projected surface region underneath
components, (c) the final minimum surface region.

Figure 13: Depending on the surface region covered by the
enclosure structure, users can decide to (a) combine
actuators in a single enclosure, or (b) group some of them in
a separate enclosure structure.

Once the final region for extrusion is defined, it is smoothed
and enlarged with 3 mm to account for the thickness of the
walls. This surface region is then extracted to a new mesh
which serves as the front panel of the enclosure structure
(thickness of the front panel; Figure 11). In another copy of
this mesh, only the faces on the outermost 3 mm are
preserved, resulting in a ring-like shape that will serve as the
side panel of the enclosure structure after the faces are
extruded (Figure 11). The wall thickness (3mm) was
determined through iterative testing. Combined with the
support structure that hold actuators in place, these walls
provide enough stability during actuation. Thicker walls
could cover undesired regions of the legacy interface or
make the enclosure heavy and prone to tipping

To connect the component housings to the enclosure
structure, RetroFab casts rays from predefined support
locations on the component housings towards the enclosure
structure. When a valid intersection is found, a cylinder
shaped support structure is created (Figure 11).

After the user specifies the locations of the mounting
brackets, that connect the retrofit interface to the legacy
interface, a predesigned mounting bracket is put in place. To
ensure that the feet of the mounting brackets matches the
surface curvatures, the Boolean difference is taken between
the faces of the mounting bracket and the 3D model, resulting
in the removal of all faces that are in inside the 3D model
(Figure 14).

In contrast to the housing the components inside the
enclosure structure that require a support structure to hold

them in place, housings of the components in the front panel
are supported by the front panel itself. A Boolean difference
operation between the front panel and all the components
creates the necessary holes in the front panel (Figure 11).

Figure 14: The mounting feet fit the curvature of the legacy
object by using a Boolean difference operation with the
scanned model.

Since remote enclosure structures only consist of retrofit
controls and indicators, only the steps described in the
paragraph above are needed to integrate component housings
within the custom 3D model.

Parametric Component Designs
For components that consist of parametric parts (white
material parts in Figure 8), additional steps are required.
RetroFab uses a plane cut to trim the track of the linear
actuator to a length that is manually specified by the user
(range of movement). For rotatory dial actuators, additional
extrusions and plane cuts are applied to create an adaptor that
has the inverse shape of the knob of the legacy dial. This
approach can also handle dials with an off-centered knob
successfully.

Communication with Microcontroller
The automatic instantiation of the generic Arduino firmware
on the microcontrollers requires an automatic assignment of
control pins. The control pins of RetroFab components can
often be connected to multiple pins on an Arduino. If binary
output suffices, a digital pin can sometimes be used in place
of an analog pin. The system takes this into account and first
uses the specified behavior to assign a set of valid control
pins to every component. Next, the algorithm selects those
pins that maximize the number of components that can be
connected given the limited set of pins on the Arduino
microcontroller.

Once pin assignments are finished, the central PC
communicates the type of components that are used and the
pins they connect to the microcontroller. The microcontroller
then responds by instantiating code for controlling these
components. Afterwards, updates on components’ states are
communicated to the central PC over XBee or using a wired
serial connection.

Communication with the Companion Mobile Application
The mobile application communicates to the central PC
using Wi-Fi. Once connected, all retrofit controls and
indicators present are transmitted to the mobile device. The
companion RetroFab mobile application then automatically
instantiates the necessary GUI elements for controlling those
components and compiles everything into a single user
interface.

9

Figure 15: Example retrofit interfaces created using RetroFab: (a) two wall switches, (b) a desk lamp, (c) a toaster, (d) an alarm

clock with companion Android application, (e) an oven with remote enclosure.

EXAMPLE DESIGNS AND USE CASES
Using the RetroFab design tool, 5 legacy interfaces were
retrofitted: (a) a wall switch, exposing a rocker switch on the
retrofitted interface, (b) A lamp, converting a legacy rocker
switch into a push button, (c) the toaster discussed in the
walkthrough, (d) an alarm clock with buttons for setting the
time (i.e., hours + minutes), setting alarms, and a snooze
button, and (e) a stove with a retrofit remote control
containing 2 dials and an indicator LED notifying the user
when the heating element is warm. Below we discuss a
number of use cases that these example design illustrate.

Remote Interactions
Every retrofit interface created by the user is available
through the RetroFab mobile application. This makes it
possible to control devices and appliances remotely, such as
the light switch when one forgets to turn off the lights. A
retrofit interface can also serve as a remote for another
retrofit interface. Turning the lamp off when going to bed,
turns off the lighting in the room as well, using the retrofitted
wall switches.

Locking Out Controls
Digital, as well as physical remotes, make it easy to hide
potentially hazardous controls for children. The remote
control for the stove can be relocated to a more secure area,
or protected further using a key lock (Figure 15e). At the
same time, the attached control on the oven contains no
physical interface, making it impossible to operate without
the remote control.

Resolving Design Flaws and Frustrations
RetroFab also facilitates the process of resolving poor design
decisions found in physical interfaces. Controlling the dials
located on the back panel of the stove requires moving one’s
arm over a number of elements, which could have pots or
frying pans on them. RetroFab allows for repositioning these
controls to a more convenient or safe location, such as the
side panel of the stove.

Setting the time and alarm on an ordinary alarm clock
(Figure 15d) is often tiring. By retrofitting the interface using
RetroFab, a shortcut can be designed for automatically

setting the current time after the lock is unplugged or a power
outage occurs. This is done by instructing the actuators to
press and hold the hour and minute buttons for a calibrated
time interval, to increase the time from the known 12:00 start
position to the current time.

Shortcuts for Frequently Used or Personalized Actions
As highlighted in the walkthrough, the retrofit interface for
the toaster can integrate a personalized button for
automatically toasting bread to one’s favorite toast settings.
Similarly, by retrofitting different wall switches in the home,
one can make new buttons that serve as shortcuts for
different lighting settings.

Facilitating Interactions for Users with Special Needs
People with disabilities are often unable to operate controls
that are found on most devices, as they require considerable
amounts of force or fall outside the range of motion they are
capable of. The retrofitted desk lamp illustrates how a rocker
switch can be converted to a lower force control, such as a
push button. A similar push button is used in the retrofit
interface of the toaster to replace the heavy mechanical lever.

Statistics on Appliance Usage
Since RetroFab intercepts interactions for every retrofitted
control, actions can be tracked and visualized in real time on
a fine-grained level (Figure 16). Using this information,
statistics over longer periods of time can be compiled to give,
for example, data on how often someone presses the snooze
button on their alarm clock.

Figure 16: Real-time monitoring of the RetroFit appliance
state from the PC.

10

PRELIMINARY USER FEEDBACK
To understand the experience of working with RetroFab, an
informal guided design session was conducted with four
participants. Two participants (P1, P2) were experienced
CAD users, while the other two (P3, P4) had only limited
experience with 3D modelling. P1 had extensive experience
in electronic circuit designs, whereas P2 and P3’s knowledge
was limited to basic prototyping with Arduino, and P4 had
no experience with electronic circuits. Each session lasted
for approximately 45 minutes.

Participants were first introduced to the concept of
retrofitting legacy devices. Then, the participants were
introduced to the RetroFab design tool using the example of
the retrofitted wall switch (Figure 15a). Once they
understood the different concepts, participants were
instructed to retrofit the desk lamp using RetroFab (Figure
15b). Due of time restrictions, the generated enclosure
structure was 3D printed beforehand and was given to the
user during the assembly phase, after they successfully
designed their own retrofit enclosure structure. Participants
then assembled the 3D printed objects and the electronic
circuit by following instructions on the screen. Finally, they
deployed the retrofitted desk lamp and controlled it from the
RetroFab mobile application. Participants reported their
experience with RetroFab through a questionnaire.

All participants were able to retrofit the desk lamp in less
than 25 minutes and saw clear benefits in using RetroFab.
Participants perceived the entire process as enjoyable and
were satisfied with the end result. They reported that the
outcome met their expectations.

Three participants (P1, P2, P3) felt they could design a
working prototype without using RetroFab, however, they all
agreed it would involve multiple iterations and span multiple
days. All participants appreciated the straightforward, step-
by-step process of RetroFab. They indicated RetroFab would
be very useful to them for retrofitting legacy devices in the
future. P4 highlighted that RetroFab was an enabling
technology for him as he would not know how to retrofit
devices without the tool.

P1, P2 and P4 mentioned they are looking forward to see how
future versions of RetroFab allow for more customization of
generated enclosure structures, such as embedding the
enclosure structure design inside a 3D model of choice or
giving a retrofitted object a cartoon-like appearance. At the
same time, these participants noted that precise placement of
RetroFab components inherently allow for
anthropomorphism, e.g. making a smiley face with RetroFab
components.

Participants recognized that this approach would be useful in
different situations, such as controlling the heating at home
remotely and saving energy, or for adapting interfaces for
impaired users. They all indicated that they would consider
deploying this technology at home.

LIMITATIONS AND FUTURE WORK
RetroFab has three important limitations, which we hope can
be addressed in future work:

First, RetroFab only generates attached enclosure structures
when there is space on the 3D scanned model for attaching
the structure. For instance, very small controls are not
supported, such as lamps that have small rocker switches
integrated in the power cable. To retrofit these devices,
future versions could support wraparound enclosure
structures that entirely enclose these kind of controls.

Second, the RetroFab toolkit currently supports actuators
optimized for operating basic controls used in appliances. In
the future, multiple actuators could be developed of various
shapes and sizes to reduce size and cost and provide an
optimal actuator for each use case. Bigger and more powerful
actuators would, for example, allow for retrofitting heavy
duty mechanical controls, such as the linear actuator already
supported, controls used in industrial machines, and handles
to adjust car seats. Another interesting direction for future
research is the support of more high-fidelity sensors, such as
microphones and cameras, besides the light sensor that is
already supported. Cameras and image processing
techniques, could allow retrofitting more complex legacy
interfaces that communicate states using displays.

Last, the current implementation of RetroFab requires
actuators and sensors to be positioned directly in front of
legacy controls. In the future, advanced transmission
mechanisms could be supported to relocate the actuators out
of sight, behind the legacy device, in order to improve the
aesthetic appearance of enclosure structures. One could
imagine using a single actuator to activate multiple controls
to make the retrofit interface smaller. Besides this, the
aesthetic appearance could be improved by allowing the user
to remodel the enclosure design.

CONCLUSION
As home automation and the development of smart objects
continues to rise in popularity, users will desire additional
functionality from their existing objects. RetroFab is able to
augment these legacy infrastructures using a simple
workflow. Many people could benefit from retrofitting
interfaces, most prominently members of the maker
community, IoT-developers, and researchers. One
particularly interesting target audience for retrofit devices
are caregivers for disabled or elderly individuals. Retrofitting
could allow people with disabilities regain independence and
operate legacy interfaces they would otherwise be unable to.
Retrofit objects can be interconnected, allowing for simple
remote control or automation, or can be used to suit a users’
individual needs. The discussion throughout this work shows
there are many potential use cases yet to explore, and many
opportunities for future work.

ACKNOWLEDGEMENTS
We thank Ryan Schmidt for providing technical advice on
Meshmixer, Madeline Gannon for helping with the 3D
prints, and Kris Luyten and Jo Vermeulen for their feedback.

11

REFERENCES
1. Frances K. Aldrich. 2003. Smart Homes: Past, Present

and Future. In Harper, R. (ed.) Inside the Smart Home,
17–39.

2. Jordan Ash, Monica Babes, Gal Cohen, et al. Scratchable
devices: user-friendly programming for household
appliances. In Proc. HCII'11, 137–146.

3. Ayah Bdeir, and Paul Rothman. Electronics as material:
littleBits. In Proc. TEI'12. 371-374.

4. A.J. Bernheim Brush, Bongshin Lee, Ratul Mahajan, et
al. Home Automation in the Wild: Challenges and
Opportunities. In Proc. CHI'11, 2115–2124.

5. Marie Chan, Eric Campo, Daniel Estève, and Jean-Yves
Fourniols. 2009. Smart homes — Current features and
future perspectives. Maturitas 64, 2: 90–97.

6. Anthony Chen, Stelian Coros, Jennifer Mankoff, and
Scott Hudson E. Encore: 3D Printed Augmentation of
Everyday Objects with Printed-Over, Affixed and
Interlocked Attachments. In Proc. UIST'15, 73-82.

7. E.J. Chikofsky and II J.H. Cross. 1990. Reverse
engineering and design recovery: a taxonomy. IEEE
Software 7, 1: 13–17.

8. Scott Davidoff, Nicolas Villar, Alex S. Taylor, and
Shahram Izadi. Mechanical Hijacking: How Robots Can
Accelerate UbiComp Deployments. In Proc.
Ubicomp'11, ACM, 267–270.

9. Morgan Dixon and James Fogart. Prefab: Implementing
Advanced Behaviors Using Pixel-based Reverse
Engineering of Interface Structure. In Proc. CHI'10,
1525–1534.

10. James R. Eagan, Michel Beaudouin-Lafon, and Wendy E.
Mackay. Cracking the Cocoa Nut: User Interface
Programming at Runtime. In Proc. UIST'11, 225–234.

11. S. Greenberg and C. Fitchett. Phidgets: easy development
of physical interfaces through physical widgets. In Proc.
UIST'01, 209–218.

12. Sidhant Gupta, Matthew S. Reynolds, and Shwetak N.
Patel. ElectriSense: Single-point Sensing Using EMI for
Electrical Event Detection and Classification in the
Home. In Proc. Ubicomp'10, 139–148.

13. Jan Humble, Andy Crabtree, Terry Hemmings, et al.
“Playing with the Bits” User-Configuration of
Ubiquitous Domestic Environments. In Proc.
UbiComp'03, 256–263.

14. Manfred Lau, Akira Ohgawara, Jun Mitani, et al.
Converting 3D Furniture Models to Fabricatable Parts
and Connectors. In. Proc. SIGGRAPH'11, 85:1–85:6.

15. Amon Millner and Edward Baafi. 2011. Modkit: blending
and extending approachable platforms for creating
computer programs and interactive objects. In Proc.
IDC'11, 250–253.

16. Stefanie Mueller, Tobias Mohr, Kerstin Guenther, et al.
faBrickation: Fast 3D Printing of Functional Objects by
Integrating Construction Kit Building Blocks. In Proc.
CHI'14, 3827–3834.

17. Makoto Ono, Buntarou Shizuki, and Jiro Tanaka. Touch
& Activate: Adding Interactivity to Existing Objects

Using Active Acoustic Sensing. In Proc. UIST'13, 31–
40.

18. Shwetak N. Patel, Thomas Robertson, Julie A. Kientz, et
al. At the Flick of a Switch: Detecting and Classifying
Unique Electrical Events on the Residential Power Line.
In Proc. Ubicomp'07, 271–288.

19. Raf Ramakers, Kashyap Todi, and Kris Luyten.
PaperPulse: An Integrated Approach for Embedding
Electronics in Paper Designs. In Proc. CHI'15, 2457–
2466.

20. Munehiko Sato, Ivan Poupyrev, and Chris Harrison.
Touché: Enhancing Touch Interaction on Humans,
Screens, Liquids, and Everyday Objects. In Proc
UIST'12, 483–492.

21. Valkyrie Savage, Sean Follmer, Jingyi Li, et al. Makers’
Marks: Physical Markup for Designing and Fabricating
Functional Objects. In Proc. UIST'15, 103-108.

22. Valkyrie Savage, Ryan Schmidt, Tovi Grossman, et al. A
Series of Tubes: Adding Interactivity to 3D Prints Using
Internal Pipes. In Proc. UIST'14, 3-12.

23. Ryan Schmidt and Karan Singh. Meshmixer: An
Interface for Rapid Mesh Composition. SIGGRAPH'10
Talks, 6:1–6:1.

24. Liyanage C. De Silva, Chamin Morikawa, and Iskandar
M. Petra. 2012. State of the art of smart homes.
Engineering Applications of Artificial Intelligence 25, 7:
1313–1321.

25. Alexander Teibrich, Stefanie Mueller, Francois
Guimbretiere, et al. Patching Physical Objects. In Proc.
UIST'15, 83-91.

26. Blase Ur, Elyse McManus, Melwyn Pak Yong Ho, et al.
Practical Trigger-action Programming in the Smart
Home. In Proc. CHI'14, 803–812.

27. Nicolas Villar, James Scott, and Steve Hodges.
Prototyping with microsoft .net gadgeteer. In Proc.
TEI'11, 377-380.

28. Christian Weichel, Manfred Lau, and Hans Gellersen.
Enclosed: A Component-centric Interface for Designing
Prototype Enclosures. In Proc. TEI'13, 215–218.

29. Christian Weichel, Manfred Lau, David Kim, et al.
MixFab: A Mixed-reality Environment for Personal
Fabrication. In Proc. CHI'14, 3855–3864.

30. Home | Nest. Retrieved September 22, 2015 from
https://nest.com

31. Smart Toast | Breville. Retrieved September 22, 2015
from http://www.breville.ca/smart-toaster.html

32. Switchmate. Retrieved September 22, 2015 from
http://switchmate.net

33. Meld | The future of cooking. Retrieved September 22,
2015 from http://www.meldhome.com

34. Lockitron. Retrieved September 22, 2015 from
https://lockitron.com

35. Connect the apps you love - IFTTT. Retrieved September
16, 2015 from https://ifttt.com

	RetroFab: A Design Tool for Retrofitting Physical Interfaces using Actuators, Sensors and 3D Printing
	ABSTRACT
	Author Keywords
	ACM Classification Keywords

	INTRODUCTION
	related work
	Automating 3D Modeling and Fabrication Processes
	Intercepting Interactions with Legacy Objects
	Design Tools for Sensor-Based Interactions

	RetroFab
	Overview and Definitions
	Walkthrough: Refactoring a Toaster
	Step 1: 3D Scanning and Annotating Controls
	Step 2: Automated Enclosure Design
	Step 3: Redesigning the Interface and Behavior
	Step 4: Fabrication and Assembly
	Step 5: Deployment

	RetroFab Toolkit
	Enclosures
	Attached Enclosures
	Remote Enclosures

	Logic and Intercommunication

	implementation
	Computationally Generated Enclosure Designs
	Parametric Component Designs
	Communication with Microcontroller
	Communication with the Companion Mobile Application

	example designs and Use cases
	Remote Interactions
	Locking Out Controls
	Resolving Design Flaws and Frustrations
	Shortcuts for Frequently Used or Personalized Actions
	Facilitating Interactions for Users with Special Needs
	Statistics on Appliance Usage

	preliminary User feedback
	limitations and future work
	conclusion
	Acknowledgements
	REFERENCES

