
60

Rataplan: Resilient Automation of User Interface Actions with
Multi-modal Proxies

TOM VEUSKENS, KRIS LUYTEN, RAF RAMAKERS, Hasselt University - tUL - Flanders Make
Expertise Centre for Digital Media

We present Rataplan, a robust and resilient pixel-based approach for linking multi-modal proxies to automated sequences of
actions in graphical user interfaces (GUIs). With Rataplan, users demonstrate a sequence of actions and answer human-readable
follow-up questions to clarify their desire for automation. After demonstrating a sequence, the user can link a proxy input
control to the action which can then be used as a shortcut for automating a sequence. Alternatively, output proxies use a
notification model in which content is pushed when it becomes available. As an example use case, Rataplan uses keyboard
shortcuts and tangible user interfaces (TUIs) as input proxies, and TUIs as output proxies. Instead of relying on available APIs,
Rataplan automates GUIs using pixel-based reverse engineering. This ensures our approach can be used with all applications
that offer a GUI, including web applications. We implemented a set of important strategies to support robust automation of
modern interfaces that have a flat and minimal style, have frequent data and state changes, and have dynamic viewports.

CCS Concepts: • Human-centered computing→ User interface programming; Accessibility systems and tools.

Additional Key Words and Phrases: tangible user interfaces, pixel-based reverse engineering, UI automation, programming-
by-demonstration

ACM Reference Format:
Tom Veuskens, Kris Luyten, Raf Ramakers. 2020. Rataplan: Resilient Automation of User Interface Actions with Multi-modal
Proxies. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 4, 2, Article 60 (June 2020), 23 pages. https://doi.org/10.1145/
3397329

1 INTRODUCTION
Over the past decade, various mobile and desktop applications became available to support activities throughout
our daily lives, including reading, music, cooking, sports, and working. To speed up interactions, these applications
often offer visual and keyboard shortcuts to frequent actions. For automating custom or personalized action
sequences, macro recorders, such as Autohotkey [21] and JitBit [17], became available that simply record and
replay mouse interactions using absolute coordinates. In contrast, Sikuli [31] and Prefab [7] support automating
more dynamic interfaces as they record and match visual elements, an approach referred to as pixel-based reverse
engineering [7]. This approach is often combined with “programming-by-demonstration (PbD)” techniques to
allow users to automate actions by simply demonstrating them [1, 16].

Traditional pixel-based reverse engineering approaches work well for interfaces that conform to well-known
UI standards and consist of basic UI elements. Examples include skeuomorphic interfaces, and standardized

Author’s address: Tom Veuskens, Kris Luyten, Raf Ramakers, Hasselt University - tUL - Flanders Make
Expertise Centre for Digital Media, Diepenbeek, Belgium, firstname.lastname@uhasselt.be.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page.
Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from
permissions@acm.org.
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
2474-9567/2020/6-ART60 $15.00
https://doi.org/10.1145/3397329

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 4, No. 2, Article 60. Publication date: June 2020.

https://doi.org/10.1145/3397329
https://doi.org/10.1145/3397329
https://doi.org/10.1145/3397329

60:2 • Veuskens et al.

UI themes, such as the Windows Areo style1. Over the past decade however, Graphical User Interfaces (GUIs)
have evolved from being skeuomorphic to having a flat and minimal design [5, 27]. Examples include the latest
versions of Slack, Gmail, Skype, and Spotify. This shift makes it challenging for state-of-the-art pixel based UI
automation tools [1, 7, 16, 31] to reliably automate behavior. For example, it is not possible to automate the
archive, delete, unread, and snooze mail buttons in Gmail using only visual inspection as these buttons only
become visible when hovering an email. Similarly, state-of-the-art UI automation tools like Prefab [7] extract UI
elements and interface hierarchies using borders of UI elements, frames, and dividers. However, these borders
are not prominent or sometimes not present at all in flat interface styles. Finally, application data is updated
frequently or even continuously retrieved from the cloud in modern interfaces. This makes it very hard for
state-of-the-art UI automation tools to reliably automate actions as the content, used as identifiers, changes. For
example, automating the action sequence to play a song in the top charts of Spotify is challenging as that song
might become less popular and move outside the view port. While automating all these interactions should be
possible in advanced programming tools like Sikuli [31], this would require users to write advanced automation
scripts to handle all possible cases and interruptions.
In this paper we present Rataplan, a robust and resilient pixel-based approach for automating advanced

action sequences in modern user interfaces. With our approach, users demonstrate sequences of actions and
answer human-readable follow-up questions to refine the intent of demonstrations (Figure 1a). In the most basic
configuration, demonstrated sequences are executed according to the demonstration. Going further, Rataplan’s
follow-up questions aim to capture more detailed specifications of the goals and intended behavior of the UI
automation, such as parameters the user want to use and the intended number of repetitions of an action sequence.
Rataplan advances state-of-the-art approaches in UI automation [1, 15, 16] in two ways: (1) Rataplan contributes
a contingency plan to recover from unexpected scenarios, such as application data and state changes often present
in modern user interfaces, and (2) Rataplan avoids requiring up-front complex specifications, by performing a
detailed graphical UI analysis and asking accessible and human-readable follow-up questions. We believe these
aspects are crucial for automating advanced sequences over extended periods of time without frequent user
intervention. Using Rataplan, a wide variety of people without programming expertise, including caregivers,
lab assistants, and designers, are empowered to specify and execute GUI automation sequences in a resilient
way, thus facilitating user-driven task automations. In this paper, we use Tangible User Interfaces (TUIs) and
keyboard shortcuts as possible ways of interacting with automated behaviour in Rataplan. However, Rataplan
can be extended to include support for other interaction techniques, such as gestures, speech, and sensor-based
triggering. We showcase the robustness of our approach and demonstrate the utility and usability of Rataplan
through several use cases, example designs, and a user evaluation.

2 WALKTHROUGH
In this walkthrough, we automate several actions in the Spotify application using Rataplan. As we show later,
Rataplan can be used to automate any application offering a GUI, including web applications. To execute
automated behaviour from ubiquitous locations, Rataplan offers a set of tangible controls which can be linked
to a demonstrated action sequence. While we use these tangible controls in this walkthrough to showcase our
approach, we would like to emphasize Rataplan can be extended with additional interaction techniques.
John has a physical disorder, which makes it hard for him to precisely control Spotify through a regular

computing device, such as a desktop. As John would like to enjoy the convenience of his favorite music player
Spotify, he asks his caregiver Emma to make a tangible interface for some of the functions in Spotify.

1https://docs.microsoft.com/en-us/windows/win32/controls/visual-styles-overview

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 4, No. 2, Article 60. Publication date: June 2020.

https://docs.microsoft.com/en-us/windows/win32/controls/visual-styles-overview

Rataplan: Resilient Automation of User Interface Actions with Multi-modal Proxies • 60:3

Fig. 1. Using Rataplan to couple tangible controls to Spotify. (a) The user demonstrates to Rataplan how to navigate to and
play the “United States Top 50” playlist. (b) When interacting with Rataplan controls, the demonstrated action is replayed by
Rataplan, regardless of which state the computer is in. (c) Rataplan also provides output, here the “Currently playing” region
is being monitored by Rataplan.

2.1 Basic UI Automation
John requests a tangible control to play his favorite playlist “United States Top 50”. Emma starts the Rataplan
system, starts a new recording, and demonstrates all mouse and keyboard actions to start the playlist after opening
Spotify through Rataplan’s homescreen, as shown in Figure 1a. When Emma picks up a Rataplan push-button,
the system automatically recognizes the tangible being manipulated. Emma clicks the play button in the Rataplan
interface while holding the physical control to link them together. Next, a new recording is started and the
play/pause button in Spotify is pressed and linked to another Rataplan push-button. Rataplan detects that the
visual state of the play button changes into pause after being pressed, and suggests configuring the Rataplan
push-button as a toggle switch. John also wants to control the volume in Spotify, but because of his impairment
he is unable to precisely manipulate a physical slider. Emma therefore decides to link three Rataplan push-buttons
to the volume slider. After demonstrating in Rataplan how to navigate to the slider, the slider is enlarged by
Rataplan. This allows Emma to precisely link Rataplan push-buttons to specific locations on the slider. She links
one button to 0%, one to 50%, and one to 100% of the slider, so John can choose between three volume levels with

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 4, No. 2, Article 60. Publication date: June 2020.

60:4 • Veuskens et al.

Fig. 2. Using Rataplan’s advanced options to play every song of “Ed Sheeran” in the top 50 playlist.

the click of a button. The Rataplan tangibles now offer control over a few essential features in Spotify without
forcing John to use a device that requires precise input, such as a mouse, keyboard, or touch (Figure 1b).

2.2 Parametric UI Automation
After a while, John wants to explore more music from his favorite artist “Ed Sheeran”. He therefore asks Emma to
reconfigure the button that currently starts the playlist “United States Top 50”. Emma decides to sequentially
play all songs of “Ed Sheeran” in the top charts. Emma again demonstrates the actions to navigate to the playlist,
but instead of clicking the “Play” button for the playlist, she clicks the play button next to a song of “Ed Sheeran”
(Figure 2). Emma uses Rataplan’s advanced options to specify that she does not want to automate playing this
specific song, but every song matching “Ed Sheeran” in the playlist. As shown in Figure 2, Rataplan therefore
extracts nearby UI elements and compiles possible filters from which Emma selects the desired one. Through
follow-up questions, she configures the button to go to the next song when pressed again. As the button is
configured to play different songs from “Ed Sheeran”, Emma thinks it is convenient to allow John to see which
song is currently playing. Therefore, Emma starts a last recording and selects the “Currently Playing” region
in the bottom region of Spotify’s UI while physically touching a Rataplan display. Rataplan now continuously
monitors this region and forwards updates to the remote Rataplan display (Figure 1c).

After completing these steps, John can take the tangibles anywhere in the house to control Spotify. Even when
Spotify is not active or is in a different state, Rataplan will initiate strategies to change the state of the application
and perform the desired action as we will discuss in the next sections.

3 RELATED WORK
This work draws from, and builds upon prior work on techniques for automating and enhancing user interfaces.
We differentiate between two classes of UI-automation techniques: (1) automation techniques that require an
understanding of the implementation and workings of the applications, and (2) automation techniques that

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 4, No. 2, Article 60. Publication date: June 2020.

Rataplan: Resilient Automation of User Interface Actions with Multi-modal Proxies • 60:5

extract and analyze the visual pixels of the interfaces, oftentimes referred to as pixel-based reverse engineering
approaches [7].

3.1 Implementation-Specific Automation Methods
Over the years, multiple new approaches have been proposed for automating user interfaces. Stuerzlinger et
al. [28] shows how to automate and reverse engineer interfaces that implement accessibility APIs. However, Hurst
et al. [14] found that on average 26% UI elements of an application are not available through these APIs. Therefore,
hybrid approaches have been presented to augment missing information from accessibility APIs with information
extracted from analyzing the pixels using computer vision techniques (pixel-based reverse engineering) [6, 14].
In contrast to these approaches, Rataplan is primarily a pixel-based reverse engineering technique that does not
use accessibility APIs since these are often not implemented consistently across platforms and applications [14].
A number of approaches have been presented which allow for run-time modifications in applications by

injecting code and libraries into third party applications to retrieve hierarchy, track user interactions, and adapt
behavior [10, 11, 22, 23]. These approaches, however, only work when specific UI toolkits are used, and all relevant
UI elements are required to be visible when opening the application as only this initial state is analyzed.
Besides desktop UI automation, several approaches are proposed to automate mobile GUIs [20] and actions

in browsers [3, 18, 19]. While the first approach relies on Android’s accessibility API, the latter approaches
use web-specific APIs. While SUGILITE [20] does not assume the system is in exactly the same state during
demonstration and automation phases, as for example automated actions can be interrupted by external events
such as a phone call, they require user intervention to manually resolve the ambiguity. In contrast, Rataplan
automatically deals with changes in the state of the GUI.

3.2 Pixel-Based Reverse Engineering
The methods discussed in the previous section depend on applications implemented in a specific toolkit, or
application developers implementing specific (accessibility) APIs. This, however, poses limitations as users cannot
automate arbitrary applications. Applications are oftentimes implemented in a wide variety of toolkits, and
as identified by Hurst et al. [14], on average 26% of UI elements are missing in accessibility APIs. Instead of
depending on underlying implementations of applications to augment or automate them, another approach is to
operate solely on the GUI of an application. The main advantage of operating on the GUI directly is that arbitrary
applications can be automated and enhanced. Commercially available macro recorders [17, 21, 24], offer basic
UI automation features by repeatedly executing recorded mouse and keyboard input on the GUI. However, the
automation sequence fails when interface elements, or their position, change as these tools do not analyze and
interpret the state of the interface. By analyzing and interpreting the GUI at pixel-level, more robust automation
sequences can be specified. This technique is oftentimes referred to as pixel-based reverse engineering [7].
Several pixel-based reverse engineering techniques have been presented to automate and enhance GUIs,

independent of the underlying platform or applications. Prefab [7–9] uses computer vision and machine learning
to recognize widget types and retrieve the UI hierarchy. However, these techniques require training the system
for every UI theme, and do not work reliably when UI elements have no clear borders. This is often the case in flat
and minimal designs, oftentimes used in modern interfaces. In contrast, Sikuli [31] does not require training the
system and offers a visual scripting language to empower users to automate GUIs by combining programming
constructs and screenshots. In Sikuli, advanced automation sequences, such as loops, parametric actions, and
GUI variations can be specified. However, programming knowledge is required, as well as a careful analysis of
the various GUI states, to write robust automation scripts. Sikuli Slides [1] offers an alternative to programming
by visually annotating screenshots. This approach is, however, limited to basic UI automation without support
for advanced automation sequences, such as loops, parameters, and GUI variations. Similar to our approach,

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 4, No. 2, Article 60. Publication date: June 2020.

60:6 • Veuskens et al.

Fig. 3. Using supporters in HILC. (a) The Wi-Fi toggle can be identified by identifying both labels to say it is in between.
(b) HILC asks the user to differentiate between the “Previous” and “Next” buttons, which is intricate to pick the correct
supporter for.

”Help, it looks confusing“ (HILC) [16] offers a pixel-based automation tool and a programming-by-demonstration
paradigm with follow-up questions to understand end-users’ desires for automation. In contrast to our approach
however, many questions in HILC are complex and not human-readable. Furthermore, this system does not
support a contingency plan to recover from UI changes.
While Sikuli Slides [1] and HILC [16] provide novice end-users with tools to specify automation behaviour

without relying on technical knowledge, they make several assumptions to facilitate this process. However, as we
will show, these assumptions do unfortunately not always hold true in modern user interfaces, and therefore
can fail when executing the resulting automation sequences. To successfully support resilient UI automation
for modern interfaces by novice end-users, we did a thorough analysis of state-of-the-art visual UI automation
approaches, including Sikuli Slides [1] and HILC [16]. Four issues present in current automation tools are identified
that make state-of-the-art tools not resilient when dealing with modern user interfaces.
(1) Ambiguities: Oftentimes, similar or identical looking items are present in interfaces. For example, multiple

identical toggle buttons can be present for controlling different settings (Figure 3a). HILC requires the user
to define supporters that have clear geometric relations to these duplicate UI elements. In the example in
Figure 3a, the Wi-Fi label and Bluetooth label can both be supporters for the first toggle as it surrounds the
control. However, selecting appropriate supporters is not always straightforward: consider automating the
“Next” button in Spotify. HILC asks to differentiate between the “Previous” and the “Next” button (Figure 3b).
One would assume the “Play” button in between both matches can be used as an identifier. However, this
button changes into pause frequently and therefore will not be sufficient for robust automation. As a result,
the correct supporter to differentiate the “Next” button is the “Previous” button, which is intricate as it is
already annotated as a false-positive match (red square in Figure 3b).

(2) Hidden information: In modern interfaces, information or UI elements can be partially or completely
hidden. First of all, information can be positioned outside of the current viewport, such as mails becoming
visible when scrolling the interface. Additionally, UI elements can be hidden until certain parts of the interface
are hovered. For example, the archive function in Gmail becoming visible when hovering a mail (Figure 4a), or
the thumb of the volume slider in Spotify only showing when hovering. HILC and Sikuli slides rely exclusively
on elements that are always visible and thus do not support automating information that might be hidden
during execution. Finally, since interfaces oftentimes have different panels, resizing them can cause certain
elements to become partially invisible or cropped (Figure 4b). HILC and Sikuli Slides are oftentimes not
successful in finding targets that are cropped.

(3) Interface interruptions: While demonstrating or recording an action, the action sequence can be inter-
rupted by unrelated messages, such as OS or application notifications, advertisements, and update requests.
During demonstration, closing these interruptions adds noise to specification, which are not supposed to be
executed upon playback. Alternatively, the execution of an automated action sequence can be hindered when

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 4, No. 2, Article 60. Publication date: June 2020.

Rataplan: Resilient Automation of User Interface Actions with Multi-modal Proxies • 60:7

Fig. 4. Hidden information in modern interfaces. (a) Action buttons for list items only become visible when hovering a list
item. (b) Visual appearance of UI elements changes as they get cropped due to resizing.

notifications show up while executing recorded sequences. While not supported in Sikuli Slides, in HILC one
could manually specify a monitoring script for all notifications that can possibly halt the replay. In practice
however, this is cumbersome and oftentimes unfeasible.

(4) Applicationmanagement: In current desktop environments, users work across multiple applications which
are frequently opened, closed, and minimized. As a result, applications can be closed, minimized, or in a
different state when triggering the execution of a recorded action sequence. In HILC and Sikuli Slides, these
situations are not supported and every application must be in the exact same state as during the demonstration
of the action sequence.
Table 1 offers a summary and additional details on shortcomings of state-of-the-art approaches, including

HILC and Sikuli slides. Additionally, we briefly highlight how Rataplan supports these important and frequently
encountered cases to allow for robust and resilient automation of modern GUIs. Section 4 elaborates on these
novel features.

4 RATAPLAN UI AUTOMATION
Rataplan’s UI automation consists of three phases. First, the user demonstrates an action sequence in the
demonstration phase. Next, our system asks follow-up questions during the specification phase to fine-tune the
recorded sequence, retrieve missing details, and resolve ambiguities. Finally, the automated UI sequence can be
executed repeatedly and triggered during the automation phase.

4.1 Demonstration Phase
Rataplan’s home screen consists of all applications installed on the computer. Rataplan requires users to start
programs from the Rataplan home screen. To enforce this, the Rataplan home screen runs in full-screen mode
by default. Recording a new action sequence starts with selecting one or multiple applications. After Rataplan
starts these applications, the user demonstrates the action sequence which requires automation by simply
demonstrating the interactions. Rataplan records all keystrokes and all mouse events, such as clicking menu
items and manipulating UI controls. Actions across multiple applications, such as copying data or files, are also
supported within the Rataplan environment. After the demonstration is finished, the user links one or more
triggers to the recorded action sequence, e.g. keyboard shortcuts or tangible controls (Section 5).

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 4, No. 2, Article 60. Publication date: June 2020.

60:8 • Veuskens et al.

Table 1. Comparison between Sikuli slides [1], HILC [16], and Rataplan with respect to resilient automation for modern UI’s.

Sikuli Slides HILC Rataplan
Ambiguity resolution Not supported - cannot

differentiate between
similar UI elements

Additional user input
during demonstration
(spatial supporter) or
during automation (if
ambiguity was not
present during
demonstration). Not
always straightforward
(Figure 3b)

Automatic Support -
expanding search region
to level of neighboring
UI elements until
ambiguity is resolved

Hidden information - Completely hidden
elements: not supported -
unable to find UI
element.
- Partially hidden
elements: not supported -
triggers a false positive
match or finds no match
at all.

- Completely hidden
elements: not supported -
unable to find UI
element.
- Partially hidden
elements: not supported -
triggers a false positive
match or finds no match
at all.

- Completely hidden
elements: supported by
exploring all viewports
and by looking for
hidden information that
appear on hover.
- Partially hidden
elements: supported by
combining pixel-based
recognition and OCR.

Handling interface
interruptions

- During recording:
supported, user can
delete slides from
recorded set.
- During execution: not
supported - unable to
proceed execution.

- During recording: not
supported - user has to
demonstrate the action
again.
- During execution:
partially supported with
additional user input -
users have to write
monitoring scripts to
handle all possible
notifications that could
halt the replay.

- During recording:
supported by allowing
users to remove some
demonstrated actions.
- During execution:
supported by looking for
UI elements to dismiss
popups or in worst-case
restart the application

Application state
management

Partially supported - user
has to make sure to
demonstrate opening the
application

Partially supported - user
has to make sure to
demonstrate opening the
application

Supported by restarting
the application for every
demonstration

4.2 Specification Phase
Next, when an action sequence is demonstrated, Rataplan asks follow-up questions and additional specifications
to better understand the user’s intention for automation. During this process, Rataplan repeats and thus automates
all demonstrated actions while requesting additional specifications. Before executing an action of the sequence,
Rataplan asks whether the interaction with <widgetType> <snapshot> should be automated. As shown in
Figure 5, the systems replaces <widgetType> with the recognized UI element and <snapshot> with a screenshot

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 4, No. 2, Article 60. Publication date: June 2020.

Rataplan: Resilient Automation of User Interface Actions with Multi-modal Proxies • 60:9

Fig. 5. A human-readable follow-up question asked by Rataplan during specification.

of the extracted target. Rataplan recognizes the basic UI control types, however users can correct these suggestions
if necessary using a drop-down menu. As Rataplan understands the type of UI widget, it can immediately link
the states of the trigger control to the states of the UI widget. In contrast, state-of-the-art approaches [1, 16]
require repeating the entire automation sequence for every state of a widget. For the example of a toggle switch,
state-of-the-art approaches require a demonstration of the full sequence, including navigating to the widget and
controlling the widget, twice.

When actions cannot be successfully completed during the specification phase, Rataplan suggests discarding
that action from the automation sequence. This sometimes occurs when the demonstration was interrupted by
unrelated pop-up messages, such as advertisements or operating system update requests.

Requesting advanced options for a demonstrated action offers features to clarify user-intent. A situation that
often occurs is the selection of a specific element from a list - does the user desire automating this precise action,
execute the action always at this position in the list, or perform the action on every element in the list? We allow
the user to generalize actions and define looping behavior to clarify their intent to Rataplan. We explain these
features in the remainder of this section.

Generalizing Actions: Data presented through digital interfaces frequently changes. Examples include, the
number one song of a top 50 chart in a music player or incoming mails. The visual information available at the
time of recording a Rataplan automation can be insufficient and more semantics of the interaction is required
to correctly automate the interaction on similar data in the future. In Rataplan, the process to generalize a
demonstrated action is initiated by gathering additional information that define user intent.

Rataplan extracts all potentially relevant UI elements near the demonstrated action (Figure 6a). This consists of
all elements on top, below, right, and left of the demonstrated action, and includes elements outside the current
view port. Elements that have a diagonal relationship (e.g. top-right direction) or are part of another scrollable
panel are not considered. When the user selects one or multiple relevant neighbors, Rataplan interprets all
possible spatial relationships and suggests various parametric action specifications (Figure 6b).

Figure 6 shows how to use Rataplan to play the first song of “Ed Sheeran” in the top 50 chart, independent of
the song title. The user first demonstrates the actions to navigate to the top 50 chart and starts the first song of the
artist. Rataplan then extracts and presents GUI elements having a horizontal or vertical spatial relationship with

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 4, No. 2, Article 60. Publication date: June 2020.

60:10 • Veuskens et al.

Fig. 6. The process for generalizing a demonstration to play the first song of a specific artist in the top 50 chart. (a) The user
selects the relevant nearby UI elements. (b) Rataplan generates a list of possible intentions from which the user can choose
and visualizes the effect on the current interface. (c) Selecting only one of the nearby elements would change the generated
human-readable possibilities and thus the selection in the current interface. With the real-time interface offered by Rataplan,
the user can explore options to accurately define intent.

the play button within the same scrollable panel (Figure 6a). In this case, selecting the header for the play button
(the label “#”) and the label containing the artist name triggers Rataplan to generate possible human-readable
parametric user intents, depending on the selected elements and their spatial relations with respect to the play
button, including “the first <play button> below # and to the left of Ed Sheeran”. The proposed positions are
based on the demonstration and the relation to the identified neighbors (i.e. demonstrating the second song of
the same artist would change the generated option to always play the second song). In addition to parametric
actions, selecting relevant neighboring GUI elements can also be used to further constrain demonstrated actions.
For example, playing only a song by “Ed Sheeran” if it is a collaboration with “Khalid” in this case. Note that
Rataplan considers all information in the viewport (automated scrolling) to find all possible parametric actions.
While users need to select appropriate neighboring elements to reveal the desired parametric action sequences,
Rataplan facilitates this by extracting possible neighboring elements, expressing actions in natural language, and

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 4, No. 2, Article 60. Publication date: June 2020.

Rataplan: Resilient Automation of User Interface Actions with Multi-modal Proxies • 60:11

visualizing the effect of a selection immediately on the current interface. Users can always go back and explore
parametric actions in relation to other GUI elements (Figure 6c).

Loop Actions: For every generalized action, Rataplan offers the option to replace the positional attribute of
the action (e.g. 5th item in a list) with a variable. As shown in Figure 6, Rataplan generates looping intents in
addition to positional parametric intents. For example, by selecting the last option in Figure 6b, every song of the
artist in the playlist can be played in sequence. This allows users to define three types of looping features. In
each of these loops, the variable is incremented every iteration.

• Repeat immediately: Finishing the action sequence immediately triggers the next iteration. This is applicable
for action sequences that only have a momentary effect, such as archiving a mail and checking off items in a
“To Do” application. In other words, no wait time is required between iterations.

• Repeat and wait for monitoring action: Rataplan waits for the previous iteration of the loop to finish before
starting the next iteration. As our approach is entirely pixel-based, Rataplan is not notified when an action is
completed (e.g. a song is finished). Therefore, the user has to specify a change in visual state to trigger the next
iteration. This is similar to the monitoring functionality offered by “Help, it looks confusing” [16].

• Repeat and wait for user action: The action sequence is repeated when the user interacts with the trigger, such
as pressing a Rataplan push-button or executing a keyboard shortcut. By default, a double press resets the
variable.

When a single action sequence consists of multiple loops, the user is requested to specify the order. This is
done by selecting the action to repeat first. For example, starting the X-th song of every playlist first before
playing the X+1-th song. Alternatively, playlist X can be processed from start to finish before starting playlist
X+1. In contrast to Rataplan’s human readable questions, earlier UI automation systems that support loops only
allow automation of simple loops (i.e. only one variable and no nested loops), and require users to specify positive
and negative example of looping objects, together with “supporters”, which was reported to be a foreign concept
in previous user studies [16].

4.3 Robust Automation Phase
When interacting with Rataplan controls, the user-specified action sequences are executed without requiring
additional user intervention. We believe this is crucial to ensure users do not have to go back to the desktop or
tablet computer to retrain the system. Rataplan achieves a robust automation phase by performing a thorough
graphical analysis of the interface and by contributing a strong contingency plan designed to automate the current
generation of user interfaces (Section 3.2). Our contingency plan supports the following four major contingency
strategies to successfully automate modern UIs over extended periods of time without user intervention. Unlike
current state-of-the-art UI automation techniques [1, 15, 16], these strategies do not require the system to be in
the correct state before starting the automation.

(1) Ambiguity Resolution: User interfaces often consist of elements that look very similar or even exactly
the same. Figure 3a shows an example of a toggle switch that is present twice, each having a different
functionality. Duplicate UI elements can already be present during the demonstration phase, or only later
during the automation phase as a result of user actions or updates. Handling these ambiguities previously
required user input by identifying supporting elements or additional training during the automation [16].
Rataplan automatically resolves ambiguities considering nearby UI elements while analyzing matches during
the automation phase. For the example in Figure 3a, menu items on top and below matches are compared
to elements present during the demonstration phase. Depending on these results, a penalty is given to both
matches to eliminate false-positives as we explain in Section 6.2.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 4, No. 2, Article 60. Publication date: June 2020.

60:12 • Veuskens et al.

(2) Hidden Information: Automated interface elements might not be visible during the automation phase.
Rataplan supports several features for finding UI elements.
First, we match text using Optical Character Recognition (OCR) in addition to matching images. OCR is
oftentimes more robust for matching UI elements that are only partially visible. Figure 4b shows an example
of menu items being partially invisible in the automation phase as a result of changes in the viewport. In
these situations, matching images will not result in accurate matches.
Additionally, interface elements that users interact with are sometimes only visible when hovering a region.
Figure 4a shows an example in Gmail in which hovering mails reveals the archive button for that mail.
Rataplan supports a strategy to automate such hidden actions by automatically hovering nearby UI elements.
Finally, a demonstrated action can be outside of the current view port. Rataplan therefore navigates through
scroll panels while matching and automating actions.

(3) Handling Interface Interruptions: Occasionally, operating systems and applications present users with
messages that require action for the system to continue. Examples include, application updates, OS updates,
and advertisements. As these interrupts happen occasionally, they are not likely to be present during both the
demonstration and automation phase. Rataplan is therefore configured to automatically cancel such messages
during the automation phase by finding a close button or buttons that include predefined text, such as “close”,
“cancel”, “postpone”, or “later”.

(4) Application State Management: In the automation phase, application states can differ from the demonstra-
tion and specification phase as a result of user interactivity or previous actions. Rataplan mitigates this concern
by always running applications in full-screen mode (taskbar cannot be used to switch applications) and
forcing the user to open applications through Rataplan’s home screen. Rataplan can therefore manage these
applications and restarts applications when initiating the demonstration phase. Therefore, the user always
demonstrates the entire action sequence from the application startup. In the automation phase, Rataplan
first tries to execute an automated action sequence from the current state. If not successful, the application
restarts. While these features simulate a sandbox mode, Microsoft Windows’ sandbox features could not be
used for Rataplan as it starts applications without any user data or preferences.

5 RATAPLAN CONTROLS
Automated action sequences in Rataplan can be triggered locally or over the network. Rataplan’s most basic
feature is to trigger automated actions using keyboard shortcuts. However, with more and more mobile and
desktop applications becoming available, supporting users in a wide variety of tasks, it is not always convenient
to physically move to the computer to trigger an action. Many situations exist in which it is cumbersome, not
possible, or not allowed to use mobile or desktop computing devices. Examples include checking a digital manual
with dirty hands during cooking or construction work, contamination or distraction risks in laboratories, and
impaired users physically not able to operate digital devices [26]. To support these use-cases, Rataplan provides
the option to link tangible controls to automated sequences [4, 12]. This allow actions automated with Rataplan
to be triggered from various locations as well as to monitor information on graphical interfaces remotely through
the use of Rataplan remote displays. Rataplan supports five controls (three input and two output), including
push-buttons, a toggle-switch, a rotary potentiometer, a monochrome OLED screen, and a LCD screen (Figure 7a).
More tangible controls can be supported in future versions, such as actuated tangibles [2]. Moreover, as we will
show in this section, Rataplan can be easily extended to support a wide variety of input methods to trigger
actions, such as speech, gesture, and sensor based interactions.
To link a physical input control to a UI element, the user first demonstrates all actions to navigate to the UI

control and holds the control while simultaneously touching the UI element. Rataplan recognises the tangible
control being manipulated using a capacitive sensor embedded in every Rataplan control (Figure 7c). Linking a

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 4, No. 2, Article 60. Publication date: June 2020.

Rataplan: Resilient Automation of User Interface Actions with Multi-modal Proxies • 60:13

Fig. 7. Rataplan Controls. (a) 3 types for input: a switch, a push-button, and a rotary potentiometer; 2 types for output:
a monochome OLED screen and a 3.5" LCD display. (b) Four 1x1 cm conductive foam pads on the bottom of a control,
interconnected with copper tape. (c) The inside of a Rataplan control where the microcontroller and a capacitive sensor are
visible. (d) The Rataplan control recognised on a capacitive touch screen.

Rataplan control to a UI element of the same type (e.g. Rataplan push-button to UI button control) creates a 1:1
mapping between the physical and the digital widgets. However, Rataplan supports more complex mappings by
linking Rataplan controls to a specific state of a widget. For example, linking three Rataplan buttons to a specific
position on a slider widget. To allow precise positional specification, Rataplan enlarges the final widget of the
demonstrated sequence making it more convenient to specify specific states (Figure 7d).
To monitor UI elements via a Rataplan output control (OLED or LCD screen), users demonstrate the action

sequence to navigate to the UI element and link the Rataplan output control to that UI region using a selection.
Rataplan will continuously stream that region to the output control. For textual information, the user is presented
the option to use OCR and stream only the characters. For monitoring operations, Rataplan launches the target
application in a different workspace to ensure users can continue using other applications on their computer.
When monitoring multiple parts of an application that are not visible at the same time, Rataplan continuously
navigates and thus switches between the UI regions. In those situations, the information on a Rataplan output
control is frozen while Rataplan navigates to another screen region.
Users working on a capacitive touch screen are also offered the possibility to link Rataplan controls to GUI

widgets by positioning the tangible control on the touch screen (Figure 7d). Rataplan then recognizes the position
of the control and automatically links it to the respective position/state of the enlarged UI element below. To
sense Rataplan controls on the touch screen, every tangible is equipped with a conductive pattern at the bottom
(Figure 7b) [29, 30].

Rataplan controls are convenient to configure as they are immediately recognized when touched and intercom-
municate with the Rataplan system. However, as automated action sequences in Rataplan can be triggered over
the network, one could also link other commercial devices, such as gestures from the Microsoft Kinect, speech
commands from Amazon Alexa, or Amazon Dash buttons to recorded actions in Rataplan.

6 SYSTEM ARCHITECTURE AND IMPLEMENTATION
The current version of Rataplan is developed for MicrosoftWindows platforms, but the concepts can be transferred
to other operating systems. Rataplan is implemented in C#.NET and uses theWin32 API for tracking and triggering
operating system wide mouse events, keystrokes, and for capturing screenshots. We use Emgu CV2, a .NET
wrapper for OpenCV, for computer vision processing.

2http://www.emgu.com

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 4, No. 2, Article 60. Publication date: June 2020.

http://www.emgu.com

60:14 • Veuskens et al.

Fig. 8. Rataplan’s graphic pipeline to extract UI elements. (a) Conversion to gray-scale image. (b) Sobel operator in X and Y
direction for edge detection, binary threshold, and morphological open and close operations. (c) The bounding box of every
contour is considered a potential target.

6.1 Recognizing UI Elements
Rataplan recognizes UI elements by analyzing screenshots and user interactions during the demonstration and
specification phases. In addition, Rataplan further analyzes the UI’s dynamic behavior during the specification
and automation phase as explained in Section 6.3.

The analysis of a screenshot captured during the demonstration phase starts with recognizing UI elements to
retrieve the target control and all surrounding elements. State-of-the-art approaches consider fixed-sized regions
around the mouse pointer as target controls [1, 16] which not always accurately enclose the true target. Rataplan
takes a more scalable approach by recognizing and extracting targets using computer vision. During this process,
a sequence of computer vision filters are applied to the screenshot, including conversion to gray-scale (Figure 8a),
a Sobel operator in the X and Y direction for edge detection, binary thresholding, and morphological open and
close operations to filter spacing between letters and words belonging together (Figure 8b). Finally, we consider
the bounding boxes of every contour as individual UI elements (Figure 8c). Using this approach, Rataplan extracts
UI elements users interact with and finds matches in the interface during the specification and automation phase.

6.2 Matching UI Elements
Rataplan matches UI elements during the automation phase using template matching and SIFT, for matching
respectively small and large patterns. This approach is similar to the FindAll() implementation in Sikuli [31].
Regions that match more than 70% are considered a match. This threshold is intentionally low to allow for
changes in the interface design over time and match controls, such as sliders, when they are in a different state.
False positives are filtered by our ambiguity resolution strategy. When no match is found, Rataplan looks for
matches using Optical Character Recognition (OCR). Our implementation uses tesseract-ocr3 for recognizing text
in captured screenshots. In contrast to matching images, OCR is more robust for matching UI elements that are
cropped as a result of changes in the viewport (Figure 4b).
When no matches are found, Rataplan initiates a strategy to hover nearby UI elements while taking new

screenshots. The matching procedure then starts again to find the target element. When no matches are found,
we change the viewport of the interface (i.e. we automatically scroll the interface), and repeat the strategy.

When matching target controls during automation, multiple exact matches (i.e. ambiguities) and false positives
(due to relative low matching threshold) are extracted from the interface. Therefore, Rataplan always considers
the neighboring UI elements of these matches. This process starts with matching the direct neighbors of the

3https://github.com/tesseract-ocr/tesseract/wiki

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 4, No. 2, Article 60. Publication date: June 2020.

https://github.com/tesseract-ocr/tesseract/wiki

Rataplan: Resilient Automation of User Interface Actions with Multi-modal Proxies • 60:15

target control. When scrollable panels are present during the demonstration or automation phase, only neighbors
located in the same panel as the matching region are considered (Section 6.3). When a neighbor element is not
found during the automation phase, or when its spatial relationship changed, a penalty of respectively 75 and 50
points is assigned to the match. For every pixel that a neighbor moved from its original relative position to the
target, a penalty of 0.5 applies. Matches for which the penalty exceeds our threshold value of 300 are eliminated.
At least five neighbors are considered and more neighbors are processed in the surrounding area until one match
remains with an acceptable penalty (below threshold). When all matching target elements are eliminated, we
change the viewport of the interface (i.e. we automatically scroll the interface), and repeat the entire strategy.

6.3 Analyzing Dynamic UI Behavior
To automate viewport changes and only consider neighbor elements within a specific scroll view, scrollable
panels have to be recognized. This is challenging for pixel-based analysis as current generation user interfaces
often only visualize scroll-bars when the user starts scrolling. Rataplan recognizes scrollable panels during the
specification and automation phase by analyzing the dynamic behavior of the interface. This is done by triggering
scroll-events in different regions of the interface and calculating the visual changes in the captured screenshots
before and after this event. Rataplan looks for scrollable panels efficiently by dividing the interface in a quadtree
structure and triggers short events that go unnoticed to the user.
During the specification phase, Rataplan recognizes the types of UI controls to correctly automate behavior

(Figure 5). Rataplan identifies the type of UI control by analyzing user interactions with this element and
corresponding UI changes. For example, a UI element that visually changes after being pressed is considered
a toggle switch. Alternatively, when the mouse drags on top of a UI element, it is recognized as a slider. As
this technique is not always fool-proof, users can adjust the recognized widget type while answering follow-up
questions (Figure 5).

6.4 Observing and Interacting with Pixels in the Background
Rataplan provides the option to deploy action and monitoring sequences on a separate workspace on theWindows
operating system. This allows for using the computer while working with Rataplan controls as all automated
interactivity takes place in another workspace. We implemented this by taking screenshots of multiple workspaces
using Microsoft’s Screen Capture API4 and programatically controlling virtual desktops5.

6.5 Sensing Rataplan Controls
Every Rataplan control is a stand-alone module containing a battery-powered NodeMCU ESP32 development
board6. Rataplan controls use the ESP32 WiFi chips embedded in the NodeMCU to communicate to the Rataplan
software over TCP/IP sockets. Events are transferred from the Rataplan controls to the Rataplan software in
JSON format, and embed a unique identifier for each control.

To sense when a Rataplan control is grasped by the user and thus linked to the recorded action sequence (see
section 5), every control is equipped with a capacitive sensor.
To extract the position of a Rataplan control on a capacitive touch screen, we use a technique similar to

PUCs [30]. The bottom region of Rataplan controls is equipped with a geometric pattern of conductive pads,
interconnected with copper tape (Figure 7b). As the number of patterns, recognisable on a touchscreen is
limited [30], we use this technique only for sensing the position of Rataplan controls placed on the screen. To
retrieve the ID of the Rataplan control positioned, we use the embedded capacitive sensor in the control and

4https://docs.microsoft.com/en-us/windows/uwp/audio-video-camera/screen-capture
5https://msdn.microsoft.com/en-us/library/windows/desktop/mt186440%28v%3Dvs.85%29.aspx
6https://joy-it.net/en/products/SBC-NodeMCU-ESP32

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 4, No. 2, Article 60. Publication date: June 2020.

https://docs.microsoft.com/en-us/windows/uwp/audio-video-camera/screen-capture
https://msdn.microsoft.com/en-us/library/windows/desktop/mt186440%28v%3Dvs.85%29.aspx
https://joy-it.net/en/products/SBC-NodeMCU-ESP32

60:16 • Veuskens et al.

Table 2. An overview of use cases which have been resiliently automated by Rataplan

Application Examples of automated behaviour
Spotify, Groove Music Controlling the play/pause button, controlling the

volume slider, playing a specific song/playlist, playing
all songs from a specific artist in playlist

Skype (standalone and website through Google
Chrome)

Calling a specific contact (e.g. as emergency contact)

Windows Photos Navigating through photos
Windows File explorer & Adobe Acrobat Reader Opening all files with PDF icon, and printing them

through the PDF program
Gmail (through Google Chrome), Windows Mail,
Outlook

Sorting mails in folders, archiving mails, monitoring
the number of unread mails (output)

Todoist, Microsoft Todo Checking all todo items in a list or all todo items
between boundaries (e.g. all items for today only,
leaving others unchecked)

Windows Settings Turning settings on and off (e.g. WiFi toggle)
Gimp, Inkscape Changing settings from tools (e.g. brush or line

thickness)
Windows Alarms & Clocks Turning a specific alarm on or off, (re)starting the

timer or the stopwatch

assume this is the only control being manipulated at the time (Figure 7c). This limitation can be mitigated in the
future by using more advanced sensing approaches [29] in Rataplan.

7 VALIDATION, EXAMPLE DESIGNS, AND USE CASES
Rataplan is designed to automate a wide variety of graphical interfaces on desktop and tablet computers, including
web browsers and thereby numerous websites. The possibilities of Rataplan go beyond the examples given in this
paper. To validate our approach scales to a wide variety of settings and interfaces, we successfully automated
a number of scenarios with Rataplan, as shown in Table 2. To illustrate the potential of Rataplan, we discuss
several examples and use cases in more detail below.
• Helping people with disabilities: Rataplan can help people with disabilities regain their independence.
Examples include controlling advanced desktop interfaces, such as Spotify (Section 2), from around the house
using input modalities, such as speech or a physical remote control. In this context, we also experimented with
configuring a physical button that triggers calling an emergency contact over Skype.

• Productivity and professional use: Rataplan offers many opportunities to increase one’s productivity in
professional or personal settings. For example, configuring Rataplan with an external trigger to navigate
through a photo album in Windows Photos avoids having a computer on the lap when scrolling through
vacation photos during a family gathering. In a printing shop, Rataplan can automate the file browser and
simplify the procedure to trigger the printing procedure for all files in a folder. While testing this example,
we noticed that Rataplan’s contingency plan makes our automation sequence even resilient when switching
the layout (i.e. list, thumbnail, details mode) of the file explorer. As shown in Figure 9, Rataplan also offers
convenience for mail clients, including web based and standalone clients. We successfully used Rataplan to
continuously map the number of unread emails in Gmail to a Rataplan display (Figure 9a). Rataplan achieves
this by recording and replaying the keystrokes to navigate to the Gmail website. As this is a monitoring task,

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 4, No. 2, Article 60. Publication date: June 2020.

Rataplan: Resilient Automation of User Interface Actions with Multi-modal Proxies • 60:17

Fig. 9. Using Rataplan to increase productivity in Gmail. (a) a Rataplan screen used to monitor the number of unread mails.
(b) Dedicated Rataplan push-buttons to organise mails into folders.

Rataplan opens the web browser in another workspace to continue monitoring the region while the computer
is being used for other activities (see Section 6.4). Additionally, we used Rataplan to make an automation
sequence for organizing mails in Gmail using physical buttons. Pressing one of the buttons, shown in Figure 9b,
assigns the corresponding label to the selected mail.

• Alternative interaction modalities: As Rataplan actions can be triggered over the network, similar to the
presented Rataplan controls (Section 5), they can also be triggered using custom designed controls, commercially
available devices, or online events (e.g. IFTTT7). For example, one can build a custom foot control [25] to
trigger actions on their desktop computer while carrying a large box. Similarly, a voice command via Amazon
Alexa could turn on an alarm clock on a tablet computer while laying in bed.

8 USER EVALUATION
Although Section 3.2 includes a detailed analysis and comparison of features available in Rataplan and state-of-
the-art visual techniques for UI automation, this section reports on a user study comparing the usability and
utility of features, Rataplan has in common with existing techniques. Our study compares Rataplan to “Help,
it looks confusing” (HILC) [16] as this tool is open source and supports basic automation as well as advanced
looping actions, also available in Rataplan. As Rataplan includes several features not available in state-of-the-art
visual UI automation approaches, such as automatic view port changes (Section 3.2), we did not include those
features in the study tasks presented to our participants. The user study was designed to reveal desires for
automating GUI tasks, to compare the usability between Rataplan and HILC, and to see which features and
aspects of Rataplan are desirable to have.

8.1 Study Procedure and Tasks
Our user study involved 16 participants (15 male, 1 female) who were recruited from computer science labs
outside our research unit. None of them were involved in, or aware of this project. Participants had an average age
of 28 years (SD 6.8, min 22, max 42). All participants reported a formal computer science education or background,
with various degrees of knowledge of software development. Only half of the participants had any experience
with automating GUI tasks before the study. All participants spent roughly one hour to complete the entire
study. The study used a within-subjects design and consisted of two tasks: a simple linear task and an advanced
looping task in both Rataplan and HILC, for a total of four conditions. For every task, both conditions were
counterbalanced across participants. After completing a task in one system, a questionnaire was filled in to
7https://ifttt.com

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 4, No. 2, Article 60. Publication date: June 2020.

60:18 • Veuskens et al.

gather feedback on their experience with using either Rataplan or HILC. The five-point Likert scale questioned
the participant’s confidence, the level of feedback from the tool, the understandability, and several task specific
questions. After completing a questionnaire, we conducted a short follow-up discussion to get more insights in
participants’ ratings. After all tasks were completed, a final questionnaire was filled in by the participants to get
insight in their demographics, their background in GUI automation, and to compare Rataplan directly with HILC
(e.g. how straightforward the system was, which system they prefer for linear and advanced tasks).

At the start of the study, instruction videos were presented, demonstrating features in both Rataplan and
HILC. Participants could pause and rewind these videos, and if necessary watch parts of the videos again while
executing the tasks. One of those instruction videos demonstrated automating the action sequence in both HILC
and Rataplan for turning MS Windows in airplane mode. This requires automating the following menus: Settings
→Network→Airplane mode→WiFi Toggle. To get participants familiar with both systems, they first replicated
this procedure using both HILC and Rataplan.
Afterwards, the following two automation tasks were given to the participants:

• The simple linear task requires participants to automate actions for opening Spotify, navigate to the “Liked
songs” menu, and trigger the “Play” button (Figure 10a). When automating this simple sequence in HILC,
supporting UI elements are requested twice: for starting Spotify and for pressing the “Play” button (Figure 10b).
Although in the latter case, both identified targets are located on the “Play” button and thus valid, HILC
frequently requests such supporters as it matches fixed-sized regions in the UI.

• The advanced looping task requires automation for opening the “Todoist” application, navigate to the “Next
7 days” window, and mark all items in the category “Today” as completed (Figure 11a). We explicitly instructed
participants that all todo items for other days should not be marked as completed by the automation procedure.
In both Rataplan and HILC, this is done by identifying the UI elements containing the labels “Today” and
“Tomorrow” as boundaries of the automation task (Figure 11b).
Participants were instructed to specify and test a UI automation procedure for both tasks in Rataplan and

HILC. During specifications, we continuously encouraged participants to think aloud. This helped us to get
insights in how the tools were used and why errors were made. For each task, participants were given 30 minutes
and could try multiple times when the specification turned out to be incorrect after testing. This time limit is
deliberately high as in HILC, machine learning approaches need to train multiple times for several minutes
to compile an automation procedure based on the identified supporting elements, and positive and negative
examples. As participants might not be experienced with Spotify and Todoist, we offered them a printout of
screenshots, detailing the sequence of interactions that required automation in Spotify and Todoist. To allow for
fair comparison with HILC, both Spotify and Todoist were made available in the Windows taskbar to allow for
quick access, similar to the list of applications available in Rataplan.

8.2 Study Results
For the linear tasks, all participants were able to correctly specify automation behaviour in Rataplan in a
single attempt. In HILC, all participants successfully identified supporting elements for the Spotify taskbar icon
(Figure 10b). However, only 7 participants recognized that no supporters are needed for the play button and
correctly dismissed the follow-up request for supporting elements. The other 9 participants positioned supporters
inside or around the play button (black background of Spotify’s interface). While in most cases the specifications
still worked, HILC sometimes got confused by these supporting elements. As such, 3 participants needed a second
attempt in HILC to complete the linear task. All participants were able to produce a working specification within
the time limit.
To compare the responses on the five-point likert-scale questions between both systems, we ran Mann-

Whitney’s U tests. Participants reported feeling more confident when specifying the automation sequence in

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 4, No. 2, Article 60. Publication date: June 2020.

Rataplan: Resilient Automation of User Interface Actions with Multi-modal Proxies • 60:19

Fig. 10. Linear task presented in the user study. (a) The task the user should demonstrate. (b) Follow-up questions presented
by HILC after demonstrating the actions on the left.

Fig. 11. Loop task presented in the user study. (a) The task the user should demonstrate. While all todo items between today
and tomorrow should be checked, the user only needs to demonstrate how to check one item (step 2). (b) Defining user
intention in Rataplan. Identifying the labels “Today” and “Tommorow” as important nearby elements visualizes the bounding
area in which Rataplan will look for matches in the current interface (cropped and zoomed for clarity).

Rataplan (Mdn=4.0) compared to HILC (Mdn=4.0, Mann-Whitney U=53.0, p<0.05). Participants also reported that
they received more feedback during specifications in Rataplan (Mdn=5.0) compared to HILC (Mdn=2.5, Mann-
Whitney U=21.5, p<0.05). Our follow-up discussion revealed that participants felt more guided and understood by
Rataplan as follow-up questions are asked in context and participants have a clear visual overview of recorded
actions. In contrast, HILC presents feedback and asks follow-up questions through a command-line interface.
Therefore feedback is only textual, not in context, and recorded snapshots of interface elements can only be seen
when explicitly opening bitmap images. As one participant commented “HILC offers a tool to automate GUIs

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 4, No. 2, Article 60. Publication date: June 2020.

60:20 • Veuskens et al.

but continuous interaction with a command-line interface is required”. Participants did not report significant
differences between the clarity and understandability of follow-up questions in Rataplan (Mdn=4.0) and HILC
(Mdn=3.0). We think this is because the linear task is fairly simple and not many follow-up questions were
presented to participants.
For the looping task, for Rataplan we define an attempt as going back to previous screens, and for HILC

we define an attempt as retraining the system to get feedback about the current specification. In Rataplan, 13
users successfully specified the action on the first attempt. For the other three participants, one clicked on the
label “Today” instead of a todo item during demonstration, one selected 2 todo items during demonstration,
and one identified the “Today” label from the left panel instead of the label above the todo items. In the second
attempt, these participants were successful as well. For Rataplan, 3 participants quit during or after their third
attempt. The other 13 participants required on average 2.2 (SD 1.1) retraining attempts to successfully automate
the desired action. Keeping in mind that HILC takes on average 5 minutes of processing time per retraining
attempt, specifications took on average longer in HILC than in Rataplan. All participants either made a working
specification or quit within the time limit. Participants felt more confident specifying the advanced task in
Rataplan (Mdn=4.0) vs. HILC (Mdn=2.5, Mann-Whitney U=39.0, p<0.05). Our follow-up discussion revealed that
Rataplan really guided participants through the specification. Being able to go back and explore different options
without having to wait really helped, as they did not have to think everything through before committing to
an action. Rataplan (Mdn=4.0) also provides significantly more feedback compared to HILC (Mdn=2.0) when
specifying an advanced task (Mann-Whitney U=26.0, p<0.05). Participants appreciated the fact that Rataplan offers
real-time feedback when selecting neighbors, which allowed them to reason about which neighboring elements
they want to identify. During discussions, some participant mentioned this feature helped them to correctly
reason about, and specify, the desired behaviour on the first attempt. In fact, the usefulness of this feature was
rated on average 4.7 (SD 0.5) on a five point scale. The follow-up questions asked by Rataplan (Mdn=4.0) are
perceived to be more clear and understandable compared to those asked by HILC (Mdn=3.0) for the advanced task
(Mann-Whitney U=44.0, p<0.05). During the follow-up discussions, the graphical and human-readable questions,
and automation queries, offered by Rataplan were identified to be really helpful. In contrast, two participants
described the follow-up questions asked by HILC as “cryptic”. The usefulness of extracting and visualizing a list
of possible important neighbors to choose from (Figure 6a) was ranked on average 4.3 (SD 0.9) out of 5. During
discussions, some concerns regarding this feature were expressed, as the overview contained duplicate items (e.g.
multiple todo items, and 2 labels containing the text “Today”). Participants suggested visualizing the widget in
the interface when hovering it, to allow exploration before selecting one. However, as mentioned by one of the
participants, “the overview restricted my choice so I can only select things which are definitely relevant for the
tool, so I’m unable to identify wrong things”.
In a final questionnaire, participants in our study group reported they found Rataplan (Mdn=4.0) more

straightforward to use than HILC (Mdn=2.0, Mann-Whitney U=31.5, p<0.05). During follow-up discussion, the
guidance of Rataplan throughout the automation process and the real-time feedback for every action were often
mentioned. 14 participants would choose Rataplan to automate linear tasks (1 expresses a preference for HILC as
they like the efficiency of a command-line interface offered by HILC, and 1 is not interested in automating linear
tasks). For advanced tasks (such as looping), 10 participants prefer Rataplan, one prefers HILC and the other 5
are not interested in automating advanced tasks by demonstration. One participant raised an interesting concern
about this: “if I would want to automate an advanced task by demonstration, I would either have to do it on real
data, or make a test environment where I can specify it. This means I first have to wait until I have my data
available before I can make a specification, but maybe at that time I do not feel like doing it, or I have no time to
specify the behaviour". On the other hand, other participants appreciated the demonstration aspect, and liked
the fact they could just show their intentions to the system. Additionally, multiple participants commented on
the time required to specify automation sequences in HILC. Participants mentioned that “this is a long waiting

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 4, No. 2, Article 60. Publication date: June 2020.

Rataplan: Resilient Automation of User Interface Actions with Multi-modal Proxies • 60:21

time especially when you realize afterwards you selected incorrect supporting items” and “if it takes this long to
automate a task, it’s hard to save time while saving time is what I want to do when automating actions”.

9 LIMITATIONS AND FUTURE WORK
Rataplan has several limitations, which open opportunities for future work:

First, additional contingency strategies will further increase the robustness and applicability of our approach.
For example, to automate interfaces when a user is not logged in or his computer is locked requires additional
research. Simply recording and replaying keystrokes to enter passwords would result in major security flaws.
Likewise, interfaces that start in an unknown state or the same state as it was closed, have to be treated differently.
For example, users could be asked to demonstrate how to navigate to the home screen in any application. We also
noticed that pixel-based GUI automation is challenging when the appearance of a UI element is almost entirely
defined by user content. This includes, for example, recognizing a new message in a chat applications like Skype
in which the text balloon resizes to fit the message. One powerful feature of Rataplan is the automated scrolling
to find content outside the current view port. However, timeouts are required for infinite scrolling lists, often
present on social media overview pages. Our algorithms could be extended to support all these cases. However, it
would also be interesting to involve remote workers, such as crowd workers, trusted workers, or care givers to
occasionally disambiguate or confirm actions during the automation phase. For example, an unknown popup
that cannot be canceled or ignored could be forwarded to a trusted worker [13].

Second, Rataplan’s GUI automation can be extended with additional features, such as automation of drag-and-
drop operations. As the visual state of targets often change during drag-and-drop operations, Rataplan needs to
extract a clean image of the target before dropping. This is not trivial, as the target is already occluded when the
mouse-release event occurs. Additionally, more advanced automation sequences can be supported in the future
by presenting more advanced parametric actions to users. Examples include parametric actions that consider
the lexicographic order of lists, such as all items starting with the letter X or all files ending in “.pdf”. It can also
be desirable to support disjunctions (OR-relations) besides conjunctions (AND-relations) in future versions of
Rataplan. This would, for example, allow the same action sequence to run over all “.pdf” and “.png” files, or to
play all the songs from two different artists in the same list.

Finally, one of the keys to our resilient automation approach is that applications are started and thus managed
by Rataplan. The current version of Rataplan therefore does not support features to UI operations for which no
application has to launch. Examples include, OS features that have shortcuts in the taskbar or on the desktop,
such as controlling the volume of the speakers. Until the time that we implement a separate strategy for these
features, OS actions can be automated with Rataplan by navigating to the respective OS applications that embed
these settings. For example, controlling the volume of the speaker through the “Setting →System →Sound”
screen.

10 CONCLUSION
As more everyday tasks will continue to be augmented or replaced by digital counterparts, we expect people to
have an increasing desire to make alternative input methods to GUI actions. To enable novice end-users to be
successful, Rataplan lowers the barier and allows the creation of custom input methods with minimal efforts. The
contingency strategies presented in Rataplan allow for resilient automation of dynamic user interfaces, which
change over time or during usage, due to variations in the viewport, changing application state, and changing
application data. Additionally, Rataplan’s parametric and loop features allow non-programmers to automate
advanced action sequences that traditionally require complex scripts. While Rataplan empowers new groups of
users to program alternative input controls, we hope our insights contribute new knowledge to the broader field
of GUI automation.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 4, No. 2, Article 60. Publication date: June 2020.

60:22 • Veuskens et al.

ACKNOWLEDGMENTS
This research was supported by the Special Research Fund (BOF) of Hasselt University and by the Research
Foundation - Flanders (FWO), project G0E7317N End-User Development of Intelligible Internet-of-Things Objects
and Applications.

REFERENCES
[1] Khalid Alharbi and Tom Yeh. 2019. Sikuli Slides. http://slides.sikuli.org. Accessed: 2019-07-30.
[2] Mark S. Baldwin, Gillian R. Hayes, Oliver L. Haimson, Jennifer Mankoff, and Scott E. Hudson. 2017. The Tangible Desktop: A Multimodal

Approach to Nonvisual Computing. ACM Trans. Access. Comput. 10, 3, Article 9 (Aug. 2017), 28 pages. https://doi.org/10.1145/3075222
[3] Shaon Barman, Sarah Chasins, Rastislav Bodik, and Sumit Gulwani. 2016. Ringer: Web Automation by Demonstration. In Proceedings of

the 2016 ACM SIGPLAN International Conference on Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA 2016).
ACM, New York, NY, USA, 748–764. https://doi.org/10.1145/2983990.2984020

[4] Florian Block, Michael Haller, Hans Gellersen, Carl Gutwin, and Mark Billinghurst. 2008. VoodooSketch: Extending Interactive Surfaces
with Adaptable Interface Palettes. In Proceedings of the 2Nd International Conference on Tangible and Embedded Interaction (TEI ’08).
ACM, New York, NY, USA, 55–58. https://doi.org/10.1145/1347390.1347404

[5] Ivan Burmistrov, Tatiana Zlokazova, Anna Izmalkova, and Anna Leonova. 2015. Flat Design vs Traditional Design: Comparative
Experimental Study. In Human-Computer Interaction – INTERACT 2015, Julio Abascal, Simone Barbosa, Mirko Fetter, Tom Gross, Philippe
Palanque, and Marco Winckler (Eds.). Springer International Publishing, Cham, 106–114.

[6] Tsung-Hsiang Chang, Tom Yeh, and Rob Miller. 2011. Associating the Visual Representation of User Interfaces with Their Internal
Structures and Metadata. In Proceedings of the 24th Annual ACM Symposium on User Interface Software and Technology (UIST ’11). ACM,
New York, NY, USA, 245–256. https://doi.org/10.1145/2047196.2047228

[7] Morgan Dixon and James Fogarty. 2010. Prefab: Implementing Advanced Behaviors Using Pixel-based Reverse Engineering of Interface
Structure. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI ’10). ACM, New York, NY, USA,
1525–1534. https://doi.org/10.1145/1753326.1753554

[8] Morgan Dixon, Daniel Leventhal, and James Fogarty. 2011. Content and Hierarchy in Pixel-based Methods for Reverse Engineering
Interface Structure. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI ’11). ACM, New York, NY,
USA, 969–978. https://doi.org/10.1145/1978942.1979086

[9] Morgan Dixon, Alexander Nied, and James Fogarty. 2014. Prefab Layers and Prefab Annotations: Extensible Pixel-based Interpretation
of Graphical Interfaces. In Proceedings of the 27th Annual ACM Symposium on User Interface Software and Technology (UIST ’14). ACM,
New York, NY, USA, 221–230. https://doi.org/10.1145/2642918.2647412

[10] James R. Eagan, Michel Beaudouin-Lafon, and Wendy E. Mackay. 2011. Cracking the Cocoa Nut: User Interface Programming at Runtime.
In Proceedings of the 24th Annual ACM Symposium on User Interface Software and Technology (UIST ’11). ACM, New York, NY, USA,
225–234. https://doi.org/10.1145/2047196.2047226

[11] W. Keith Edwards, Scott E. Hudson, Joshua Marinacci, Roy Rodenstein, Thomas Rodriguez, and Ian Smith. 1997. Systematic Output
Modification in a 2D User Interface Toolkit. In Proceedings of the 10th Annual ACM Symposium on User Interface Software and Technology
(UIST ’97). ACM, New York, NY, USA, 151–158. https://doi.org/10.1145/263407.263537

[12] Saul Greenberg and Michael Boyle. 2002. Customizable Physical Interfaces for Interacting with Conventional Applications. In Proceedings
of the 15th Annual ACM Symposium on User Interface Software and Technology (UIST ’02). ACM, New York, NY, USA, 31–40. https:
//doi.org/10.1145/571985.571991

[13] Anhong Guo, Xiang âĂĲAnthonyâĂİ Chen, Haoran Qi, Samuel White, Suman Ghosh, Chieko Asakawa, and Jeffrey P. Bigham. 2016.
VizLens: A Robust and Interactive Screen Reader for Interfaces in the Real World. In Proceedings of the 29th Annual Symposium
on User Interface Software and Technology (UIST âĂŹ16). Association for Computing Machinery, New York, NY, USA, 651âĂŞ664.
https://doi.org/10.1145/2984511.2984518

[14] Amy Hurst, Scott E. Hudson, and Jennifer Mankoff. 2010. Automatically Identifying Targets Users Interact with During Real World
Tasks. In Proceedings of the 15th International Conference on Intelligent User Interfaces (IUI ’10). ACM, New York, NY, USA, 11–20.
https://doi.org/10.1145/1719970.1719973

[15] Thanapong Intharah, Michael Firman, and Gabriel J. Brostow. 2018. RecurBot: Learn to Auto-complete GUI Tasks From Human
Demonstrations. In Extended Abstracts of the 2018 CHI Conference on Human Factors in Computing Systems (CHI EA ’18). ACM, New
York, NY, USA, Article LBW595, 6 pages. https://doi.org/10.1145/3170427.3188532

[16] Thanapong Intharah, Daniyar Turmukhambetov, and Gabriel J. Brostow. 2017. Help, It Looks Confusing: GUI Task Automation Through
Demonstration and Follow-up Questions. In Proceedings of the 22Nd International Conference on Intelligent User Interfaces (IUI ’17). ACM,
New York, NY, USA, 233–243. https://doi.org/10.1145/3025171.3025176

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 4, No. 2, Article 60. Publication date: June 2020.

http://slides.sikuli.org
https://doi.org/10.1145/3075222
https://doi.org/10.1145/2983990.2984020
https://doi.org/10.1145/1347390.1347404
https://doi.org/10.1145/2047196.2047228
https://doi.org/10.1145/1753326.1753554
https://doi.org/10.1145/1978942.1979086
https://doi.org/10.1145/2642918.2647412
https://doi.org/10.1145/2047196.2047226
https://doi.org/10.1145/263407.263537
https://doi.org/10.1145/571985.571991
https://doi.org/10.1145/571985.571991
https://doi.org/10.1145/2984511.2984518
https://doi.org/10.1145/1719970.1719973
https://doi.org/10.1145/3170427.3188532
https://doi.org/10.1145/3025171.3025176

Rataplan: Resilient Automation of User Interface Actions with Multi-modal Proxies • 60:23

[17] JitBit. 2019. Macro Recorder, Macro Program, Keyboard Macros & Mouse Macros. https://www.jitbit.com/macro-recorder/. Accessed:
2019-07-01.

[18] Gilly Leshed, Eben M. Haber, Tara Matthews, and Tessa Lau. 2008. CoScripter: Automating & Sharing How-to Knowledge in the
Enterprise. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI ’08). ACM, New York, NY, USA,
1719–1728. https://doi.org/10.1145/1357054.1357323

[19] Ian Li, Jeffrey Nichols, Tessa Lau, Clemens Drews, and Allen Cypher. 2010. Here’s What I Did: Sharing and Reusing Web Activity with
ActionShot. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI ’10). ACM, New York, NY, USA,
723–732. https://doi.org/10.1145/1753326.1753432

[20] Toby Jia-Jun Li, Amos Azaria, and Brad A. Myers. 2017. SUGILITE: Creating Multimodal Smartphone Automation by Demonstration.
In Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems (CHI ’17). ACM, New York, NY, USA, 6038–6049.
https://doi.org/10.1145/3025453.3025483

[21] AutoHotkey Foundation LLC. 2020. AutoHotKey. https://www.autohotkey.com. Accessed: 2020-02-13.
[22] Xiaojun Meng, Shengdong Zhao, Yongfeng Huang, Zhongyuan Zhang, James Eagan, and Ramanathan Subramanian. 2014. WADE:

Simplified GUI Add-on Development for Third-party Software. In Proceedings of the 32Nd Annual ACM Conference on Human Factors in
Computing Systems (CHI ’14). ACM, New York, NY, USA, 2221–2230. https://doi.org/10.1145/2556288.2557349

[23] Dan R. Olsen, Jr., Scott E. Hudson, Thom Verratti, Jeremy M. Heiner, and Matt Phelps. 1999. Implementing Interface Attachments Based
on Surface Representations. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI ’99). ACM, New York,
NY, USA, 191–198. https://doi.org/10.1145/302979.303038

[24] Macro Recorder. 2019. Mouse and Keyboard Capture. https://www.macrorecorder.com. Accessed: 2019-07-01.
[25] Dominik Schmidt, Raf Ramakers, Esben W. Pedersen, Johannes Jasper, Sven Köhler, Aileen Pohl, Hannes Rantzsch, Andreas Rau, Patrick

Schmidt, Christoph Sterz, Yanina Yurchenko, and Patrick Baudisch. 2014. Kickables: Tangibles for Feet. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems (CHI ’14). ACM, New York, NY, USA, 3143–3152. https://doi.org/10.1145/2556288.
2557016

[26] P. Frazer Seymour, Justin Matejka, Geoff Foulds, Ihor Petelycky, and Fraser Anderson. 2017. AMI: An Adaptable Music Interface to
Support the Varying Needs of People with Dementia. In Proceedings of the 19th International ACM SIGACCESS Conference on Computers
and Accessibility (ASSETS ’17). ACM, New York, NY, USA, 150–154. https://doi.org/10.1145/3132525.3132557

[27] Konstantinos Spiliotopoulos, Maria Rigou, and Spiros Sirmakessis. 2018. A Comparative Study of Skeuomorphic and Flat Design from a
UX Perspective. Multimodal Technologies and Interaction 2, 2 (June 2018), 31. https://doi.org/10.3390/mti2020031

[28] Wolfgang Stuerzlinger, Olivier Chapuis, Dusty Phillips, and Nicolas Roussel. 2006. User Interface FaçAdes: Towards Fully Adaptable
User Interfaces. In Proceedings of the 19th Annual ACM Symposium on User Interface Software and Technology (UIST ’06). ACM, New York,
NY, USA, 309–318. https://doi.org/10.1145/1166253.1166301

[29] Simon Voelker, Christian Cherek, Jan Thar, Thorsten Karrer, Christian Thoresen, Kjell Ivar Overgard, and Jan Borchers. 2015. PERCs:
Persistently Trackable Tangibles on Capacitive Multi-Touch Displays. In Proceedings of the 28th Annual ACM Symposium on User Interface
Software & Technology (UIST ’15). ACM, New York, NY, USA, 351–356. https://doi.org/10.1145/2807442.2807466

[30] Simon Voelker, Kosuke Nakajima, Christian Thoresen, Yuichi Itoh, Kjell Ivar Overgard, and Jan Borchers. 2013. PUCs: Detecting
Transparent, Passive Untouched Capacitive Widgets on Unmodified Multi-touch Displays. In Proceedings of the 2013 ACM International
Conference on Interactive Tabletops and Surfaces (ITS ’13). ACM, New York, NY, USA, 101–104. https://doi.org/10.1145/2512349.2512791

[31] Tom Yeh, Tsung-Hsiang Chang, and Robert C. Miller. 2009. Sikuli: Using GUI Screenshots for Search and Automation. In Proceedings of
the 22nd Annual ACM Symposium on User Interface Software and Technology (UIST ’09). ACM, New York, NY, USA, 183–192. https:
//doi.org/10.1145/1622176.1622213

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 4, No. 2, Article 60. Publication date: June 2020.

https://www.jitbit.com/macro-recorder/
https://doi.org/10.1145/1357054.1357323
https://doi.org/10.1145/1753326.1753432
https://doi.org/10.1145/3025453.3025483
https://www.autohotkey.com
https://doi.org/10.1145/2556288.2557349
https://doi.org/10.1145/302979.303038
https://www.macrorecorder.com
https://doi.org/10.1145/2556288.2557016
https://doi.org/10.1145/2556288.2557016
https://doi.org/10.1145/3132525.3132557
https://doi.org/10.3390/mti2020031
https://doi.org/10.1145/1166253.1166301
https://doi.org/10.1145/2807442.2807466
https://doi.org/10.1145/2512349.2512791
https://doi.org/10.1145/1622176.1622213
https://doi.org/10.1145/1622176.1622213

	Abstract
	1 Introduction
	2 Walkthrough
	2.1 Basic UI Automation
	2.2 Parametric UI Automation

	3 Related work
	3.1 Implementation-Specific Automation Methods
	3.2 Pixel-Based Reverse Engineering

	4 Rataplan UI Automation
	4.1 Demonstration Phase
	4.2 Specification Phase
	4.3 Robust Automation Phase

	5 Rataplan Controls
	6 System Architecture and Implementation
	6.1 Recognizing UI Elements
	6.2 Matching UI Elements
	6.3 Analyzing Dynamic UI Behavior
	6.4 Observing and Interacting with Pixels in the Background
	6.5 Sensing Rataplan Controls

	7 Validation, Example designs, and use cases
	8 User Evaluation
	8.1 Study Procedure and Tasks
	8.2 Study Results

	9 Limitations and Future work
	10 Conclusion
	Acknowledgments
	References

