Mixed-Initiative Visual Programming
Paradigms for Authoring
Sensor-Based Systems

Raf Ramakers Kris Luyten

Hasselt University - tUL - imec Hasselt University - tUL - imec
Expertise Centre for Digital Expertise Centre for Digital
Media Media

Diepenbeek, Belgium Diepenbeek, Belgium
raf.ramakers@uhasselt.be kris.luyten@uhasselt.be

Copyright ©2017 for this paper is held by the author(s). Proceedings of MICI 2017:
CHI Workshop on Mixed-Initiative Creative Interfaces.

Abstract

Most users of computing devices are non-programmers and
are limited to passive consumers of the technology that is
made available to them. While research on end-user de-
sign environments resulted in procedures to automatically
generate design and electronic aspects of sensor-based
systems, automated code generation is limited to simple
repetitive tasks. In this position paper, we explore mixed-
initiative approaches to assist users in specifying logic for
sensor-based systems. By combining visual programming
and machine learning concepts, our approach presents a
tight interactive loop in which the user and system both take
turns in producing, evaluating, and modifying logic behavior.

Author Keywords

Visual Programming; Design Environments; Inductive Pro-
gramming; Programming-By-Demonstration; Ubiquitous
Computing.

ACM Classification Keywords
H.5.2 [[Information interfaces and presentation]]: :User In-
terfaces

Introduction

Advancements in thin-film electronics and digital fabrica-
tion technologies make it possible to seamlessly embed
interactivity in physical artifacts. Recently, there is an in-

creasing interest in end-user design environments that
enable people without a technical background to author
such ubiquitous interfaces [8, 9, 11]. These kind of design
environment offer an end-to-end approach by guiding the
user and streamlining the process to make ubiquitous com-
puting interfaces. Although it is feasible to abstract and
automate many graphical modeling and electronic design
tasks [8, 9, 11], accurately generating the underlying logic
that represents the desired behavior is still extremely chal-
lenging. Especially so for interactive systems, since the
interpretation of the computer should match with the ex-
pectations of the users. Therefore, non-programmers are
required to learn programming skills to successfully trans-
late the envisioned workings of the system into a sequence
of statements.

To facilitate expressing the behavior of interactive system by
non-programmers, researchers investigated visual program-
ming and programming-by-demonstration methodologies.
Visual programming approaches [7] facilitate the process of
specifying logic behavior by offering visual building blocks.
While these approaches mitigate syntax issues, a basic un-
derstanding of different programming constructs still needs
to be learned. Especially when specifying temporal be-
havior, often present in sensor-based systems, constructs,
such as variables, loops, functions, and timers are required.
Examples include, actions triggered after a temperature
change over time, a button that has to be pressed fast or
long enough, an LED or audio signal triggered at a certain
frequency, conditions that need to be completed in a cer-
tain order or at the same time. Specifying such behaviors
has a steep learning curve and is often cumbersome for
non-experts. In contrast, programming-by-demonstration [5]
approaches automate the entire programming procedure by
synthesizing logic constructs from input and output exam-
ples demonstrated by the user. While convenient for first-

time programmers, specifying precise relations and detailed
timing properties is cumbersome and requires demonstrat-
ing many positive and negative examples.

In this position paper, we present a mixed-initiative ap-
proach to assist users in specifying logic for sensor-based
systems. By combining visual programming and machine
learning concepts used in programming-by-demonstration,
our approach presents a tight interactive loop in which the
user and system both take turns in producing, evaluating,
and modifying logic behavior. Our work builds on top of a
novel domain-specific visual programming paradigm, Pul-
sation, that is tailored for specifying the behavior of sensor-
based systems. If appropriate, we can demonstration of our
Pulsation logic specification technique during the workshop.

Background and Related Work
This work draws from, and builds upon work in visual pro-
gramming and inductive programming techniques.

To allow users without a programming background to spec-
ify logic behavior, researchers investigated visual program-
ming techniques [7]. Unlike visual programming approaches
to avoid syntax errors, such as Scratch [10], Pulsation fa-
cilitates authoring the behavior of sensor-based systems

as every logic construct offers precise control over timing
properties. In contrast, Scratch [10] or visual programming
approaches supported by LEGO Mindstorms [1] require
users to construct complex algorithms using timers in order
to match or produce patterns over time. Amongst the visual
programming approaches that target specific domains, such
as PureData' for audio processing or Nodebox? graphical
renderings, LabView [12] and programming approaches

Thttps:/puredata.info
2https://www.nodebox.net

Figure 1: Continuously assigning
the value of a slider to the
brightness of an LED when a
switch is in the on-state.

in Loxone® are optimized for sensor-based systems, simi-
lar to Pulsation. However, both systems target experts and
thus require users to follow extensive tutorials. The IFTTT
system* on the other hand, simplifies programming to el-
ementary conditional behavior but has limited expressive
power.

To automate the programming process, researchers looked
into techniques to synthesize code from users’ provided
example. This methodology, often referred to as inductive
programming [4], induces logic behavior consistent with

the user’s specified examples of the intended behavior. For
example the Flash Fill feature [3] in Microsoft Excel 2013
mitigates repetitive string transformations by automatically
generating string processing scripts from one or more user-
provided examples. In ubiquitous computing, one can also
demonstrate examples directly with sensors in the real-
world. These kind of programming approaches are often re-
ferred as programming-by-demonstration or programming-
by-example [5, 2].

Pulsation

In contrast to visual programming languages, such as Scratch [10]

or LEGO Mindstorms [1] that rely on abstract building blocks,
Pulsation allows users to specify behavior directly on top of
components using visual links (Figure 1). Although visual
links facilitate the visibility and overview of logic constructs
for non-experts, it is unclear how simple links can translate
to coherent specifications in a grammar. Even for simple
components, such as linking a pushbutton to an LED, many
different relationships are possible including, turning the
LED on when pushed and turning it off when pushed again
(toggle), turning the LED immediately off when the button
is released. Alternatively, the LED can fade in over time or

3http://www.loxone.com
“https://ifttt.com

blink. Therefore Pulsation supports an interaction paradigm
for constructing a detailed logic graph to precisely link logic
constructs (Figure 1). In this section, we first discuss the
different constructs available in Pulsation (grammar). Then
we show how the visual programming paradigm facilitates
instantiating grammar constructs. Pulsation grammar can
be tested by users in a run-time environment.

Grammar

The majority of behavior in sensor-based systems is influ-
enced by some sort of temporal behavior. The Pulsation
logic grammar is therefore tailored for specifying behav-

ior that requires precise control over time. The grammar
consists of five constructs: variables, conditions, actions,
and events. Conditions are boolean expressions that eval-
uate the state of variables, actions change variables, and
events of conditions trigger events of actions. To allow for
loops and encapsulations, Pulsation supports aggregate
and derived constructs that are specific to conditions and
actions. Condition aggregates consist of multiple conditions
(conjunction/disjunction), and a temporal relationship (e.g.
completed simultaneously, or ordered, etc.). Derived condi-
tions calculate a specific derived parameter from the child
condition, such as the number of times the child condition
is completed (loop/repeater), duration of time to complete
the condition, percentage of child conditions completed
(progress), etc. Similarly, action aggregates consist of multi-
ple actions and allow for specifying delays. Derived actions
are regulated by parameters e.g. repeating actions a num-
ber of times or executing only a limited number of actions of
an aggregate action.

Visual Logic Specifications

Pulsation offers an interaction paradigms for constructing a
detailed logic graph to precisely link conditions and actions.
Figure 1 demonstrates the basics: (a) Clicking on an elec-

ON oN oN

>> Exclude (0)

Figure 2: Turning all switches to
on within 5 seconds will start fading
the LED.

tronic component reveals a hierarchical radial menu con-
sisting of conditions and actions that relate to the variable
associated with that component (e.g. brightness variable of
an LED). This includes basic conditions and actions (e.g.
brightness equals x, turn LED on), as well as derived con-
ditions and actions (e.g. LED on for x seconds, fade LED
from x to y in t seconds). While hovering over these con-
ditions and actions, associated events appear. Events of
conditions are linked to events of actions by drawing visual
links using a drag-and-drop interaction style. (b) In this ex-
ample, we specify that the value of a slider is continuously
assigned to the brightness of an LED as long as the switch
is in the on-state.

Radial menus presented in the previous paragraph offer
conditions and actions in the context of a single variable.
Advanced conditions and actions consisting of multiple
variables, are authored using a condition and action com-
poser. Using these advanced composers, aggregate con-
ditions/actions are nested to support precise control of tim-
ing parameters and relations between variables. Figure 2
shows a condition composer consisting of a nested aggre-
gate and derived condition to specify that three switches
have to be turned on, in a sequential order, within 5 sec-
onds to make the LED fade in.

Mixed-Initiative Programming Approaches
Although Pulsation facilitates the process of specifying the
behavior of sensor-based systems, users still need to cor-
rectly translate the desired behavior to logic rules. Novices
oftentimes lack computational thinking skills and end up
with incorrect or incomplete logic specifications. For exam-
ple, it is challenging for first-time users to identify conflicting
behavior or infer when variables are needed to store inter-
mediate results, when to stop or pause the execution of
logic, and when to reset a variable. In earlier versions of

Pulsation [9], we identified common situations in which it is
desired to automatically introduce additional actions, such
as reverting actions when a condition is not satisfied any-
more. However during tests, we oftentimes encountered
situations in which these automatic actions limited the ex-
pressive power, for example, in cases were reversing the
action was not appropriate or the inverse operation was am-
biguous to determine.

To assist users, without limiting the expressive power of
Pulsation, we introduce mixed-initiative programming tech-
niques to suggest logic addition, corrections, or alternatives
that are appropriate in the current context. To infer addi-
tional logic constructs from user specified logic behavior,
we consider probabilistic modeling, machine learning, and
inductive programming strategies. Using these techniques,
the system suggests logic constructs to the user and up-
dates its recommendations every time the user adds Pul-
sation logic. The suggested additions can be updated or
removed after testing in the Pulsation run-time environment.
As such, there is a continuous interplay between the user
and the system in order to facilitate authoring behavior of
sensor-based systems.

Example Scenarios and Techniques

We identified three situations in which mixed-initiative ap-
proaches could significantly help users in composing logic
behavior for sensor-based systems:

Suggesting Logic Additions

Given the behavior already specified, some logic constructs
are more likely to be required than others in order to com-
plete the behavior of a system. By analyzing the Pulsation
logic already specified, the system can automatically rec-
ommend logic additions that users might forget otherwise.
These kind of recommendations can be derived from previ-

ously specified Pulsation programs (from the same or differ-
ent users) using stochastic models (e.g. Markov widget in
Grasshopper Rhino®) or classification algorithms.

For example, in conditional behavior it is often desired that
actions are reversed once the conditions are not satisfied
anymore. First-time programmers oftentimes forget such
inverse operations. Although inverse actions are convenient
to add for very simple condition-action triggers (e.g. turning
LED on when button is pressed), inverse actions are am-
biguous when advanced actions or many components are
involved. For example, the inverse of fading in the bright-
ness of an LED over time, could be a fade-out operation

or a reset to its original brightness level. Such a reverse
operation is not desired at all when the system is in a cer-
tain state when the condition (e.g. logging in on a numeric
pad) is completed. Similarly, novices often forget to reset
stop/pause execution of actions, or reset variables and
states. By leveraging the knowledge of previously speci-
fied programs, the system can suggest one or multiple logic
constructs that users can build upon further.

Resolving Incomplete Specifications

Informal tests with Pulsation revealed that it is oftentimes
challenging for first-time programmers to compose detailed
actions and conditions, especially when variable param-
eters or sub-actions (e.g. pause/stop) are involved. With
probabilistic models in place, one could directly interlink
components after which the Pulsation synthesizer initiates
the most appropriate conditions and actions. For example,
when linking a rotary dial or linear slider to a light or LED,
the system can propose logic for realizing a dimmer. When
connecting a switch to this configuration, the system could
automatically recommend logic for realizing a master switch
in the system. Employing these kind of intelligent decisions,

Shttp://www.grasshopper3d.com

ensures that the system is always meaningful and oper-
ational while the user can refine logic behavior iteratively
after testing.

Identifying and Resolving Incorrect Specifications

When systems do not work as expected, it is very challeng-
ing for non-programmers to inspect the system and identify
the incorrect or missing logic construct. We propose an in-
ductive programming strategy [4] were the system infers
new or alters existing logic constructs to resolve the behav-
ior. In our approach, the user annotates and corrects the
state of components in the run-time environment when an
abnormality occurs. For example, the user annotates that
an alarm is off whereas it should be turned on. The system
will synthesize new logic constructs consistent with the ex-
ecution of the system and the corrections provided by the
user. The inference may draw solely on the input/output
data and corrections in the current system or use additional
auxiliary concepts from background knowledge synthesized
from other user-defined behavior. When multiple solutions
are viable, logic rules can be ranked based on their simplic-
ity, size, or generalizability [3].

Challenges

Although probabilistic modeling, machine learning, and in-
ductive programming strategies are very promising to real-
ize mixed-initiative visual programming approaches, imple-
menting these concepts comes with a few challenges:

« Logic constructs specified by the user require careful con-
sideration before being synthesized as training data. Au-
tomatically verifying the meaning and stability of logic
behavior is however challenging.

» One very important property of authoring environments is
offering a high ceiling to allow for many design variations.

Logic synthesizers thus need to operate in a slightly dif-
ferent context every time. Example logic behavior that is
qualified to be used as training data therefore needs to
be abstracted and converted to auxiliary concepts first.
Defining which auxiliary concepts are substantial enough
to be used as background knowledge is non-trivial. Es-
pecially for inductive programming strategies, too many
auxiliary concepts make it hard to select the appropriate
concepts in the induction step whereas to little auxiliary
concepts requires new concepts to be invented by the
synthesizer [6]

« It is challenging for the system to determine when to offer
logic suggestions. When recommending logic constructs
early on in the authoring process, the recommender sys-
tem might not have enough context and knowledge to
suggest appropriate behavior. Deferring the suggestions
too long might deteriorate the user’s ability to author the
behavior of a system.

Conclusion

As ubiquitous computing systems and loT technologies
continues to rise in popularity, users will desire more control
over the behavior of these devices. In this position paper,
we introduced mixed-initiative programming paradigms that
facilitate and guide the user in specifying logic for sensor-
based systems. We discussed how our domain specific
visual programming approach, Pulsation, can be enriched
with probabilistic models, machine learning techniques, and
inductive programming strategies to bridge the gap for non-
programmers to specify logic behavior. We discussed the

novel opportunities of these approaches as well as the chal-

lenges for future research. If appropriate, we can demon-
stration of our Pulsation logic specification technique during
the workshop.

Acknowledgements

Funding for this research was provided by the Fund For
Scientific Research Flanders (F.W.O. Vlaanderen, project
number GOE7317N).

References
[1] David J Barnes. 2002. Teaching introductory Java through LEGO
MINDSTORMS models. In Proc. SIGCSE Bulletin, Vol. 34. ACM,
147-151.
[2] Adam Fourney and Michael Terry. 2012. PICL: Portable In-circuit

Learner. In Proc. UIST ’12. ACM, 569-578.

Sumit Gulwani. 2011. Automating string processing in spreadsheets

using input-output examples. In ACM SIGPLAN Notices, Vol. 46.

ACM, 317-330.

[4] Sumit Gulwani, Jose Hernandez-Orallo, Emanuel Kitzelmann, , and

others. 2015. Inductive programming meets the real world. Commun.

ACM 58, 11 (2015), 90-99.

Bjérn Hartmann, Leith Abdulla, Manas Mittal, and Scott R. Klemmer.

2007. Authoring Sensor-based Interactions by Demonstration with

Direct Manipulation and Pattern Recognition. In Proc. CHI '07. ACM,

145-154.

José Hernandez-Orallo. 2013. Deep knowledge: Inductive program-

ming as an answer. Technical Report. Dagstuhl TR 13502.

Caitlin Kelleher and Randy Pausch. 2005. Lowering the Barriers

to Programming: A Taxonomy of Programming Environments and

Languages for Novice Programmers. ACM Comput. Surv. 37, 2 (June

2005), 83-137.

Raf Ramakers, Fraser Anderson, Tovi Grossman, and George Fitz-

maurice. 2016. RetroFab: A Design Tool for Retrofitting Physical

Interfaces Using Actuators, Sensors and 3D Printing. In Proc. CHI

’16. ACM, 409-419.

Raf Ramakers, Kashyap Todi, and Kris Luyten. 2015. PaperPulse: An

Integrated Approach for Embedding Electronics in Paper Designs. In

Proc. CHI "15. ACM, 2457-2466.

[10] Mitchel Resnick, John Maloney, and others. 2009. Scratch: program-
ming for all. Commun. ACM 52, 11 (2009), 60-67.

[11] Valkyrie Savage, Sean Follmer, Jingyi Li, and Bjérn Hartmann. 2015.
Makers’ Marks: Physical Markup for Designing and Fabricating Func-
tional Objects. In Proc. UIST ’15. ACM, 103—108.

[12] Lisa K Wells and Jeffrey Travis. 1996. LabVIEW for everyone: graphi-
cal programming made even easier. Prentice-Hall, Inc.

[3

[5

6

7

8

9

	Introduction
	Background and Related Work
	Pulsation
	Grammar
	Visual Logic Specifications

	Mixed-Initiative Programming Approaches
	Example Scenarios and Techniques
	Suggesting Logic Additions
	Resolving Incomplete Specifications
	Identifying and Resolving Incorrect Specifications

	Challenges
	Conclusion
	Acknowledgements
	References

