

Acknowledgments

This dissertation has one author, yet it would not have been possible without
the support and encouragement of many people.

First and foremost, I would like to address special thanks to my advisor
Prof. Dr Kris Luyten, for giving me the opportunity to pursue a PhD. Kris
sparked my interest in HCI research as an undergraduate research and gave me
the freedom to persue my own research interests. He gave me the time to focus
on fundamental research problems and o�ered great advice whenever I needed.
Kris, thank you for supporting, supervising, and funding the various research
projects and research stays that I engaged in. Thank you for all the opportu-
nities that boosted my career. I would also like to thank my co-advisor, Prof.
Dr Johannes Schöning for his endless encouragements, energy, and enthusiasm.
As I oftentimes strongly believe in my own convictions, Johannes learned me
to become a bit more pragmatic in my research approaches. Without his ad-
vice, this dissertation and other projects would not have existed at the time
of writing. I would also like to thank Prof. Dr Karin Coninx for being part of
my PhD. committee, her feedback on this work, and the opportunity to work
in a great environment.

Furthermore, I want to express my thanks to the other members of my
jury, Prof. Dr Jürgen Steimle, Prof. Dr Björn Hartmann, and Prof. Dr Wim
Deferme. Thank you for your constructive and valuable feedback that helped
to improve this dissertation. Thanks also to the chairman of my jury, Prof. Dr
Marc Gyssens. I also would like to express my thanks to the panel of experts
who provided feedback on my dissertation work during the UIST doctoral
symposium: Prof. Dr Patrick Baudisch, Prof. Dr Daniel Ashbrook, Prof. Dr
Eric Paulos, and Dr Andy Wilson.

The research in this dissertation is not only in�uenced by people, it is also
inspired by other researchers. Over the past few years, I had the opportunity
to work with some very inspiring researchers. Right after my master studies,

ii Acknowledgments

Prof. Dr Patrick Baudisch gave me the opportunity to start an internship at
the Hasso-Plattner Institute. Working in such a creative environment was a
remarkable experience and continued to in�uence my research style. Patrick,
thank you for this experience and for your advice when we meet at conferences.
Near the end of my PhD, Dr Tovi Grossman and Dr George Fitzmaurice gave
me the opportunity to intern at Autodesk Research. Thank you for the amaz-
ing time in Toronto and for starting such a great project together. Also thanks
for your trust in me until the last night when all the research results �nally
ended up in the paper. Thanks as well to Prof. Dr Daniel Wigdor for tem-
porarily hosting me at the DGP Lab at the University of Toronto.

This work would not have been possible without the support of my col-
leagues and collaborators. In particular, I would like to say thanks to Kashyap
Todi for being such a great collaborator on the PaperPulse project and for
being a soundboard when experimenting with research ideas. I want to single
out Dr Davy Vanacken for mentoring me during my master studies and for his
advice on teaching. A big thanks as well to Dr Jo Vermeulen for all his feed-
back and input on my work. I also want to thank my co-authors from other
institutes: Dr Fraser Anderson for the support throughout my internship at
Autodesk and for sharing his knowledge on actuation techniques; Dr Dominik
Schmidt and Dr Esben Pedersen for being such friendly collaborators on the
Kickable project. Also thanks to Madeline Gannon for helping and intervening
while I was �ghting the 3D printers right before the CHI deadline.

I would like to express my gratitude to the EDM management, Prof. Dr
Eddy Flerackers, Prof. Dr Frank Van Reeth, and Peter Vandoren, for the
opportunity to work in such a supportive environment. I also thank Ingrid
Konings and Roger Claes for helping me with administrative tasks and for
taking care of logistics, especially when we shipped or bought material for con-
ference demonstrations. One of the great things of working at the EDM are
the friendly, talented, extremely helpful colleagues. I have not seen a place
where it was that convenient to consult researchers across di�erent disciplines.
Thanks to Prof. Dr Peter Quax for his help and advice on electronics, net-
working, and drone related stu�. Danny Leen and Tom De Weyer, thank you
for your help and assistance in the FabLab and MakerSpace. I also want to say
thanks to Steven Maesen, Dr Patrick Goorts, Jeroen Put, and Nick Michiels
for their advice and suggestions on computer graphics and computer vision
related problems. Also thanks to Johannes Taelman for sharing his expertise
on embedded system design, Karel Roberts for creating visual designs used in
the PaperPulse project, and Prof. Dr Mieke Haesen and Stanislas De Vocht
for their help and support while valorizing the some of the research results in

iii

this dissertation.
I am also grateful to all the other colleagues whom I traveled, lunched,

assisted courses, and discussed research with or who joined me to the gym: Dr
Gustavo Rovelo, Donald Degraen, Kris Gabriels, Dr Maarten Wijnants, Dr Jan
Van den Bergh, Pavel Samsonov, Supraja Sankaran, Marisela Gutierrez Lopez,
Eva Geurts, Bram Bonné, Sven Coppers, Jens Brulmans, Thomas Kovac, Lode
Jorissen and many others.

On a more personal note, I would like to thank my family and friends.
In particular my mother for her support, and making my life easier than it
should be. Thanks to my friends for the fun, stability, and support in di�cult
times. Special thanks to Jeroen Witters and Jim Stukken, who have been close
friends for a very long time and who were always in for a good conversation.
Last but not least, I want to thank my partner Evelien Ritzen, who has been
on my side for over eight years now. Thank you for being so patient with me,
for supporting me during the most stressful times, and for joining me in all my
endeavours.

iv Acknowledgments

Abstract

Graphical user interfaces are at the core of the majority of computing devices,
including WIMP (windows, icons, menus, pointer) interaction styles and touch
interactions. The popularity of graphical user interfaces stems from their abil-
ity to adapt to a multitude of tasks, such as document editing, messaging,
browsing, etc. New tools and technologies also enabled users without a tech-
nical background to author these kind of digital interfaces, for example, �lters
for quick photo editing, interactive pro�les on social media, or easy-to-use con-
tent management systems. In contrast, physical interfaces are hard to author
as they embody electronic input and output sensors directly in the material.
These physical interfaces are de�ned by both their physical form and function-
ality. As such, authoring physical interfaces oftentimes requires expertise of
materials, electronics, design, and programming.

This dissertation investigates novel tools and techniques to bridge the
knowledge gap that novices experience while authoring physical interfaces. On
the one hand, we present software-hardware tools to support novices while
conceiving new or repurposing existing physical interfaces using digital fabri-
cation machinery. On the other hand, we tap into the future by exploring how
transformable materials allow for adapting the form-factor of interfaces on the
�y.

In this thesis, we make four main contributions to the body of author-
ing tools related Human-Computer Interaction (HCI) knowledge. Each of the
contributions presents novel tools and systems which addresses a subset of
the problems that non-experts experience while authoring physical interfaces.
With prototype implementations, example walkthroughs, and user evaluations,
we demonstrate how the di�erent techniques alleviate the problems they ad-
dress.

Through the concepts and systems presented in this dissertation, we lower
the barriers for non-experts to make and deploy physical interfaces. For users

vi Abstract

with a technical background, we make the engineering processes more conve-
nient and e�cient. In a larger sense, the novel concepts and systems presented
in this dissertation, move interactive interfaces from traditional graphical user
interfaces to physical spaces.

List of Scienti�c Contributions

All research presented in this dissertation is published at primary forums of
dissemination of research results in Human-Computer Interaction (HCI): the
ACM Conference on Human Factors in Computing Systems (CHI) and the
ACM Symposium on User Interface Software and Technology (UIST). The
following overview lists the publications that contributed in a direct way to
this dissertation:

• [Ramakers 16] Raf Ramakers, Fraser Anderson, Tovi Grossman, George
Fitzmaurice. RetroFab: A Design Tool for Retro�tting Physical Inter-
faces using Actuators, Sensors and 3D Printing. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems (CHI)
2016, pp. 409-419. (Best Paper Honorable Mention Award)

• [Ramakers 15a] Raf Ramakers. Recon�guring and Fabricating Special-
Purpose Tangible Controls. In Adjunct Proceedings of the ACM Sym-
posium on User Interface Software and Technology (UIST EA) 2015.

• [Ramakers 15c] Raf Ramakers, Kashyap Todi and Kris Luyten. Paper-
Pulse: An Integrated Approach for Embedding Electronics in Paper De-
signs. In Proceedings of the ACM Conference on Human Factors in
Computing Systems (CHI) 2015, pp. 2457-2466.

• [Ramakers 15b] Raf Ramakers, Kashyap Todi and Kris Luyten, An End-
User Development Approach for Designing and Fabricating Interactive
Paper, Workshop on End User Development in the Internet of Things
Era, ACM Conference on Human Factors in Computing Systems (CHI
EA) 2015.

• [Ramakers 14] Raf Ramakers, Johannes Schöning and Kris Luyten. Pad-
dle: Highly Deformable Mobile Devices with Physical Controls. In Pro-

viii List of Scienti�c Contributions

ceedings of the ACM Conference on Human Factors in Computing Sys-
tems (CHI) 2014, pp. 2569- 2578.

• [Ramakers 13] Raf Ramakers, Kris Luyten and Johannes Schöning. Learn-
ing from 3D puzzles to inform future interactions with deformable mobile
interfaces. Workshop on Displays Take New Shape: An Agenda for In-
teractive Surfaces, ACM Conference on Human Factors in Computing
Systems (CHI EA) 2013.

In addition to the abovementioned works, I published other articles related
to the work presented in this dissertation:

• [Schmidt 14] Dominik Schmidt, Raf Ramakers, Esben Pedersen, Johannes
Jasper, Sven Köhler, Aileen Pohl, Hannes Rantzsch, Andreas Rau, Patrick
Schmidt, Christoph Sterz, Yanina Yurchenk and Patrick Baudisch. Kick-
ables: Tangibles for feet. In Proceedings of the ACM Conference on
Human Factors in Computing Systems (CHI) 2014, pp. 3143-3152.

• [Ramakers 12] Raf Ramakers, Davy Vanacken, Kris Luyten, Karin Con-
inx and Johannes Schöning. Carpus: A Non-Intrusive User Identi�cation
Technique for Interactive Surfaces. In Proceedings of the ACM Sympo-
sium on User Interface Software and Technology (UIST) 2012, pp. 35-44.

I also demonstrated the work presented in this dissertation at two exhibi-
tions:

• [Ramakers 15d] Raf Ramakers, Kashyap Todi, Kris Luyten. PaperPulse:
An Integrated Approach for Embedding Electronics in Paper Designs.
ACM SIGGRAPH 2015, Studio.

• [Ramakers 15e] Raf Ramakers, Kashyap Todi, Kris Luyten. PaperPulse:
An Integrated Approach to Fabricating Interactive Paper. ACM Confer-
ence on Human Factors in Computing Systems (CHI EA) 2015, Interac-
tivity.

Contents

Acknowledgments i

Abstract v

List of Scienti�c Contributions vii

Contents xii

List of Figures xv

1 Introduction 1

1.1 Background . 2

1.2 Research Goals and Challenges 5

1.3 Contributions . 7

1.4 Dissertation Outline . 10

2 Related Work 13

2.1 Fabricating Electronic Circuits and Sensors 13

2.1.1 Electronic Rapid Prototyping Toolkits 14

2.1.2 Circuit Board Fabrication Techniques 14

2.1.3 Thin-Film Electronic Sensors 17

2.2 Digital Fabrication and 3D Modeling 20

2.2.1 Simplifying and Accelerating the Fabrication Process . . 20

2.2.2 Facilitating the 3D modeling Process 21

2.2.3 Adding Interactivity to Fabricated Objects 22

2.3 Visual Programming Methodologies 23

2.3.1 General-Purpose Visual Programming 24

2.3.2 Special-Purpose Visual Programming 25

2.4 Design Environments for Sensor-Based Interactions 26

x CONTENTS

2.5 Real-Time Transformable User Interfaces 28

2.5.1 Manual Transformable Interfaces 28

2.5.2 Actuated Shape-Changing Interfaces 32

3 PaperPulse: Designing and Fabricating Physical Interfaces 33

3.1 Introduction . 33

3.2 Brief System Overview . 35

3.3 Walkthrough: The Hungry Monkey Game 38

3.4 PaperPulse Widget Toolkit . 42

3.4.1 Electronic Sticker Widgets 45

3.4.2 Paper-Membrane Widgets 46

3.4.3 Pull-Chain Widgets . 47

3.4.4 Summary of PaperPulse Widgets 49

3.5 Pulsation: Specifying Functional Relationships between Elec-
tronic Components . 49

3.5.1 Input Sets . 50

3.5.2 Output Sets . 51

3.5.3 If�then Rules . 51

3.5.4 Map�to Rules . 52

3.6 Architecture and Implementation 53

3.6.1 Generating Electronic Circuits 53

3.6.2 Pulsation Interpreter . 59

3.6.3 Generating Printable Pages 60

3.7 Example Designs and Use Cases 60

3.8 User Study: Making Stand-Alone Interactive Paper Artifacts . 64

3.8.1 Preliminary User Evaluation 64

3.8.2 PaperPulse Workshop 66

3.9 Discussion . 68

3.9.1 Pulsation . 68

3.9.2 Electronic Circuit Design 70

3.9.3 Widget Toolkit . 71

3.10 Summary . 71

4 RetroFab: Adapting Existing Physical Interfaces 73

4.1 Introduction . 73

4.2 Brief System Overview . 76

4.3 Walkthrough: Refactoring a Toaster 77

4.4 RetroFab Widget Toolkit . 83

4.5 Enclosure Structure Design . 85

CONTENTS xi

4.5.1 Attached Enclosures . 86

4.5.2 Remote Enclosures . 87

4.6 Architecture and Implementation 88

4.6.1 Computationally Generated Enclosure Designs 88

4.6.2 Parametric Component Designs 90

4.6.3 Communication with Microcontroller 91

4.6.4 Communication with the Mobile Application 92

4.7 Example Designs and Use Cases 92

4.8 User Study: Retro�tting a Desk Lamp 94

4.9 Discussion . 95

4.10 Summary . 96

5 Pulsation 2.0: Visual Programming for Physical Interfaces 99

5.1 Brief System Overview . 101

5.2 Pulsation 2.0 Grammar . 102

5.2.1 Variables . 102

5.2.2 Conditions . 103

5.2.3 Actions . 104

5.2.4 Events . 104

5.2.5 Grammar Instance . 105

5.3 Pulsation 2.0 Visual Logic Speci�cations 105

5.3.1 Conditions and Actions with Individual Variables 106

5.3.2 Composite Conditions and Actions 110

5.4 Architecture and Implementation 113

5.5 Pulsation 2.0 E�ectiveness Attributes 114

5.5.1 Reducing Solution Viscosity 114

5.5.2 Power in Combination 115

5.6 Discussion . 116

5.7 Summary . 117

6 Paddle: Real-Time Physical Transformations 119

6.1 Introduction . 119

6.2 Brief System Overview . 121

6.3 Interaction Design Space of Transformable Devices 122

6.3.1 Initiative to Transform 125

6.3.2 Intent of the Transformation 125

6.4 Engineering and Implementation 128

6.4.1 Mechanical Construction 128

6.4.2 Software Implementation 130

xii CONTENTS

6.5 User Study 1: Physical Controls vs Direct Touch 131
6.5.1 Task Designs . 131
6.5.2 Study Procedure . 133
6.5.3 Hypotheses . 134
6.5.4 Results . 134
6.5.5 Study Discussion . 136

6.6 User Study 2: Contributing Factors 138
6.6.1 Task Designs . 139
6.6.2 Study Procedure . 139
6.6.3 Hypotheses . 139
6.6.4 Results . 140

6.7 Findings and Design Recommendations 141
6.7.1 Physical scrolling through longer lists 142
6.7.2 Design Recommendations 143

6.8 Discussion . 144
6.9 Summary . 145

7 Discussion and Future Work 147
7.1 Digital Fabrication and Transformable Interfaces 147
7.2 Target Audiences . 149
7.3 User-Experience of Computationally Generated Solutions . . . 150
7.4 Seamlessly Integrated Physical Interfaces 150

8 Conclusion 151
8.1 Addressing the Research Challenges 151
8.2 Addressing the Research Goals 153

Appendices 157

A Pulsation 2.0 Grammar Instance 157

B Nederlandstalige Samenvatting 163

Bibliography 187

List of Figures

1.1 Urp: a workbench for urban planners and architects 4

1.2 Kickables: Tangibles for feet . 4

1.3 Linking the research challenges to the contributions of this dis-
sertation . 8

3.1 An interactive paper game designed with PaperPulse 34

3.2 PaperPulse work�ow . 36

3.3 PaperPulse electronic stickers 37

3.4 Di�erent types of widgets can co-exist in a single design 39

3.5 Recording an if�then rule to control the switch 41

3.6 Recording an if�then rule to control the buzzer 42

3.7 PaperPulse logic simulator . 43

3.8 PaperPulse assembly process 44

3.9 PaperPulse widget families . 44

3.10 All PaperPulse electronic stickers 45

3.11 Paper-membrane widgets . 46

3.12 PaperPulse pull-chain widgets 47

3.13 Design of pull-chain widgets . 48

3.14 Pulsation logic to realize a code slot 51

3.15 Detecting invalid bridge locations 54

3.16 Invalid placement of bridge sticker components 54

3.17 Morphological operations used to identify valid bridge locations 56

3.18 Electronic circuit after the last iteration of the A* algorithm . . 57

3.19 The circuit routing algorithm favors additional space between
circuit traces. 58

3.20 Example design: diet card . 61

3.21 Example design: secret invitation card 61

3.22 Example design: interactive restaurant menu 62

xiv LIST OF FIGURES

3.23 Example design: interactive poster 63
3.24 Example design: tapping game 64
3.25 PaperPulse designs by participants 65
3.26 Three PaperPulse designs realized during the workshop 67

4.1 The Switchmate retro�t kit . 74
4.2 Retrofab terminology . 76
4.3 Retrofab Work�ow . 78
4.4 Automatically detecting the enclosure region 79
4.5 The mounting brackets . 80
4.6 Pulsation in RetroFab . 81
4.7 Interconnecting appliances using Pulsation in RetroFab 82
4.8 Android companion application 83
4.9 The RetroFab Toolkit . 84
4.10 Mechanical principles of the �xed-actuator designs 85
4.11 Exploded view of a RetroFab attached enclosure. 86
4.12 The mounting feet �t on the curvature of the surface 87
4.13 Steps to compute the minimal surface region for the extrusion . 89
4.14 Combining or splitting enclosure structures 90
4.15 Boolean operation to �t the mounting feet on the surface 91
4.16 Example retro�t interfaces created using RetroFab 92
4.17 Real-time monitoring of the RetroFit interfaces. 94

5.1 Linking the state of a switch to the brightness of an LED. . . . 106
5.2 Alternative solution for linking the sate of a switch to an LED. 107
5.3 Continuous mapping of values 108
5.4 Inverting the value of a slider 109
5.5 Basic condition composer example 111
5.6 Basic condition composer and action composer example 112

6.1 Example controls supported by Paddle 120
6.2 Infrared re�ective markers on Paddle 122
6.3 Transformation model of Paddle 123
6.4 Example usage of Paddle . 124
6.5 The intent of the transformation 126
6.6 Physical controls of Paddle vs touch interactions 127
6.7 Paddle leverages engineering principles of the Rubik's Magic

puzzle . 129
6.8 The wiring pattern used for the hinges 129
6.9 The optical tracking system setup 130

LIST OF FIGURES xv

6.10 Task design of the �rst study 132
6.11 Quantitative results of study 1 135
6.12 Task design of second study . 138
6.13 Quantitative results of study 2 141

7.1 Claytronics: creating and adapting physical objects on the �y . 148

8.1 Linking the research challenges to the contributions of this dis-
sertation . 152

xvi LIST OF FIGURES

Chapter 1

Introduction

With advancements in Do-It-Yourself (DIY) maker machinery (e.g. 3D print-
ers, laser cutters, conductive inkjet printers) it becomes possible to produce
physical artifacts in low volumes at reasonable costs. Hence, there is an in-
creasing trend towards mass customization of physical artifacts, for example,
designers making customized household gadgets. At the same time, there is
an increasing interest in bringing concepts of interactive technologies, that we
know from digital devices (e.g. intercommunication, dynamic content, real-
time responses, etc.), to these physical artifacts by embedding sensor tech-
nologies.

Although DIY machinery makes it economically viable to produce highly
customized interactive objects, designing these artifacts is still a tedious pro-
cess involving experts in di�erent disciplines, including visual/industrial de-
signers, electrical engineers, and programmers. Researchers already explored
techniques to facilitate making interactive physical artifacts for program-
mers [Greenberg 01, Hodges 13, Lee 04]. However, enabling users without a
technical background to author physical interfaces did not receive much atten-
tion.

In this dissertation, I investigate and engineer systems and technologies
that allow people without a technical background to make and adapt physical
interfaces that match the constantly evolving needs of users.

2 Introduction

1.1 Background

The human-machine interactions with one of the �rst computing devices in
time, the ENIAC [Goldstine 46], was eminently physical, there were no graph-
ical displays. Information entered the system using punch cards and the ma-
chine was controlled with patch cables, switches, and dials. Every functionality
of the system was �physically embodied� and hence had its own dedicated phys-
ical handle, an interaction paradigm often referred to as �space-multiplexed
input�. The Sage [Everett 57] and later the Sketchpad system [Sutherland 64],
introduced a graphical display at the center of the computer and some func-
tionalities started to move to the screen and thus become �digitally embodied�.
However, every input functionality in these systems had its own physical han-
dle. With the introduction of the Xerox Star [Johnson 89], a new interaction
paradigm emerged that was entirely centered around the graphical display.
Users interact with these systems using one of the most general-purpose of
input devices: mice and keyboards. The only physical aspect of these input
devices is that one can touch and hold them. Operations with these input
devices are often referred to as �time-multiplexed�, since the physical handle is
being repeatedly attached and unattached to various logical functions of the
graphical user-interface. With advancements in interactive display technology
over the past decade, the direct touch interaction modality has replaced mice
and keyboard for many mobile devices. This input modality requires users
to time-multiplex, mostly the index �nger, over various controls. Regardless
whether the display is desk-mounted, head-mounted, hand-held, wrist-worn, or
embedded in the physical environment, the prevailing combination of screens
and general-purpose input devices is the predominant interaction style of com-
puting devices nowadays.

One of the main reasons behind this trend towards more display centered
interaction styles and general-purpose input modalities is that machines in
this con�guration, are known to be easy to modulate. In contrast to the
ENIAC in which specialized controls are used for arithmetic, the screen, mouse,
and keyboard of the Xerox Star served a multitude of o�ce tasks. Modern
computing devices today are repeatedly modulated and an increasing number
of domains start to adopt some sort of digital embodiment on these systems.
Examples include, �nding additional information online for products in retail
stores, following a recipe on a tablet while cooking, or tracking your progress
while running.

In response to this trend, over the past two decades, researchers explored
physical user interfaces (also often referred to as Tangible User Interfaces [Ishii 97,

1.1 Background 3

Fitzmaurice 95]) which retain the physical handles of the earliest comput-
ing devices while preserving the computational power of computers nowa-
days. In these novel interfaces, researchers give physical forms to digital in-
formation and use these physical embodiments to manipulate the digital con-
tent. Figure 1.1 shows Urp, a seminal tangible interface by Underko�er and
Ishii [Underko�er 99]. Urp makes it easier for urban planners and architects
to experiment with shadows casted by buildings. Architects simply manipulate
physical representations of these buildings on top of a display. Shadows casted
by these buildings are rendered in real-time on the display corresponding to
the position of these building and the orientation of the sun. Figure 1.2 shows
another instance of a tangible interface, the Kickables system [Schmidt 14].
In contrast to traditional tangibles representations which are controlled using
hands, Kickables are operated by feet. Although alternative versions of both
systems could be designed that embody all controls digitally using mice, key-
boards, or direct touch (using hands or feet), studies reveal several bene�ts
that come with physical handles. These bene�ts include, bimanual interac-
tion and eyes-free operation [Fitzmaurice 95], encouraging epistemic interac-
tions [Kirsh 94], strong physical a�ordances [Ishii 97], facilitating collabora-
tion [Underko�er 99], memory recollection [Mugellini 07], etc.

Unlike traditional general-purpose computing devices, well designed phys-
ical embodiments cannot be modulated with every type of content as the
physical design needs to re�ect the digital information. Additionally, physical
mediums are often hard to author as compared to digital mediums. Nowadays,
digital mediums, such as graphical interfaces are easy to author by non-experts
using well designed interfaces. As such, digital interfaces are easy to adapt to
changing user needs. Examples include personalized pro�les on social media,
operating system UI-themes, search results, photos (using easy to use �lters),
websites (e.g. WordPress), questionnaires (e.g. Google Forms), con�gurations
to prevent access to certain tv-channels, or specialized updates to make inter-
faces more convenient to operate by elderly or disabled individuals. In contrast,
authoring interactive physical interfaces, such as Urp or Kickables, often re-
quires a lot of expertise and skills in di�erent domains, including materials,
electronics, programming, and design. Even for physical mediums that are not
digitally augmented, such as paper, or clay, authoring their physical shape is
traditionally hard. Hence, people come from across the world to see origami
structures and sand or stone sculptures created by artists and engineers with
specialized skills and expertise.

In this dissertation, I investigate and engineer systems and technologies
that allow non-experts to make and adapt physical interfaces to match the

4 Introduction

Figure 1.1: Urp [Underko�er 99]: a workbench for urban planners and architects
to experiment with shadows casted by buildings.

Figure 1.2: Kickables [Schmidt 14]: Tangibles for feet

1.2 Research Goals and Challenges 5

constantly evolving needs of users. As such, these systems enable users without
a technical background to take control over physical interfaces.

Many systems in this thesis focus on software design environments for au-
thoring physical user interfaces. Traditionally, design environments support
many features, to address the needs in established �elds they target, such as
Microsoft Visual Studio for programming, Eagle for electronic designs, and
Adobe Illustrator, Autodesk Inventor, or similar CAD environments for 2D
or 3D graphical designs. These design environments are often referred to as
�expert tools�. In contrast, end-user development environments target non-
professional use and therefore provide a low thresshold for users to get started.
Examples include, spreadsheets for analyzing and storing data models, Google
Sketchup1 for 3D modeling, and Scratch [Resnick 09] for programming. To
facilitate the authoring process even further, �integrated end-user development
environments� combine and streamline various functionalities available in in-
dividual development environments in order to ease the work�ow for the user.
Examples include, d.tools [Hartmann 06] which provides an integrated envi-
ronment for designing, testing, and analyzing di�erent versions of physical
prototypes. Autodesk's 123D Circuit tool2 integrates programming, electron-
ics, testing, and deployment of embedded circuit designs.

1.2 Research Goals and Challenges

With advancements in Human-Computer Interaction (HCI), digital interfaces
became easy to customize by non-experts. Examples include, pro�les on so-
cial media, operating system themes, search results, photos (using easy to use
�lters), websites (e.g. WordPress), questionnaires (e.g. Google Forms), etc.
Authoring physical interfaces, in contrast, is challenging as authoring these
interfaces consist of many di�erent aspects, including, shaping physical mate-
rials, graphical designs, electronics, and sensor-based programming. One needs
expertise in these di�erent domains to make interactive physical interfaces or
adapt existing ones. In this dissertation, I investigate and engineer systems
and technologies that allow users without a technical background to author
interactive physical interfaces.

To enable non-experts to take control over physical interfaces, this disser-
tation focuses on the following three research goals:

1www.sketchup.com
2www.123dapp.com/circuits

6 Introduction

(G1) Establish integrated software-hardware solutions that enable
users without a technical background to make new interactive
physical interfaces by authoring the form-factor and behavior.

(G2) Establish integrated software-hardware solutions that enable
users without a technical background to author the form-factor
and behavior of existing interactive physical interfaces.

(G3) Establish integrated software-hardware solutions that enable
users without a technical background to adapt the form-factor
and resulting behavior of interactive physical devices in real-
time.

The following research challenges support these research goals and address
the lack of expertise often experienced when working with technology for au-
thoring physical interfaces:

(C1) Availability of machinery and knowledge required to author
physical materials
Although many tools and techniques exist for making low-�delity phys-
ical constructions, such as paper-prototyping, clay, or LEGO, precise
manufacturing of high-�delity materials, require professional tools and
techniques. Without extensive training, non-experts are oftentimes un-
able to make precise paper models using origami folding techniques, weld
materials, or operate a milling lathe or advanced CNC-machinery. Sim-
ilarly, integrating electronic circuit traces into physical materials tradi-
tionally requires complex chemical etching methods. In this dissertation,
we investigate inexpensive Do-It-Yourself (DIY) machinery for author-
ing physical materials (G1)+ (G2), as well as easy-to-use techniques for
modulating physical materials in real-time (G3).

(C2) Technical expertise and spatial reasoning skills required for
making designs
With digital fabrication machinery, a digital representation of the design
is converted into a physical instantiation of that model. These types
of machines generally require less technical expertise since they do not
rely on the users' ability to shape materials and instead only require an
accurate digital model as input from the user. The quality of the digital
model thus depends on the users' experience with advanced modeling
tools (e.g. vector graphics or 3D modeling environments) as well as their
ability to convert an idea for a physical interface into digital models

1.3 Contributions 7

often consisting of multiple parts (G1). Additionally, adapting exist-
ing physical interfaces traditionally requires users to model the existing
interface (G2). Using these professional design tools however, requires
extensive training.

(C3) Electrical engineering knowledge required
Seamlessly augmenting physical artifact with digital information often
requires electronic components and microcontrollers to be embedded
inside the physical material. Making electronic circuits however, re-
quires knowledge of many electronic components and principles, includ-
ing, analog-to-digital and digital-to-analog conversion techniques, signal
processing, noise reduction, multiplexing strategies, etc. People without
a technical background do not necessarily have this expertise.

(C4) Advanced sensor-based programming knowledge required
Creating new (G1) or adapting existing (G2)+ (G3) physical interfaces
often requires changing the behavior, and thus the code, that controls
electronic components. Specifying the behavior of sensor-based systems
is very challenging for non-programmers. Furthermore, embedded sys-
tems that are often used to deploy these systems, have limited memory
and processing power. Hence, a variety of programming skills are re-
quired.

(C5) A wide diversity of heterogeneous tools and systems available
Designing 2D or 3D models, writing program code, and designing elec-
tronic circuits all require using di�erent modeling tools, electronic de-
sign tools, and programming environments, such as Autodesk Inventor,
Adoble Illustrator, Eagle, or Microsoft Visual Studio. It is extremely
challenging for non-experts to master these di�erent tools without ex-
tensive training. Many physical interfaces have strong dependencies be-
tween, for example, the locations of components on electronic circuit
boards and the 2D or 3D designed model. Users therefore frequently
have to switch between di�erent tools and deal with multiple aspects of
the design process simultaneously.

1.3 Contributions

This thesis makes several major contributions to the �eld of human-computer
interaction. Through the development of several systems, we contribute new

8 Introduction

Figure 1.3: Linking the research challenges and goals to the contributions of this
dissertation: Horizontal items de�ne the research challenges (C1-C5). Vertical items
de�ne the contributions. The research goals (G1-G3) are at the top. The intersections
summarize how the respective contributions resolve the research challenges.

knowledge and insights to enable people without a technical background to au-
thor various kinds of physical interfaces. Each of these systems target speci�c
research goals and challenges outlined in Section 1.2. Figure 1.3 summarizes
how the contributions link to the di�erent research goals and challenges. Al-
though all systems developed in this thesis are unique contributions in their
own right, the concepts and techniques used to reach these goals and address
the challenges, however, have broader implications that can directly be applied
to other systems or inspire the design of novel systems in the future.

The following systems are developed in the context of this dissertation and
support the research goals and challenges outlined in the previous section:

1. PaperPulse [Ramakers 15c] enables users to design interactive
paper interfaces (G1). PaperPulse is an integrated design and fabri-
cation environment in which users start by overlaying their visual design
with electronic components (C2). After users specify the behavior of
the electronic components using the Pulsation logic speci�cation tech-
nique (C4), a multi-layered paper design is generated with embedded
electronic circuit traces to power all components (C3). These layers are

1.3 Contributions 9

then printed on paper using an o�-the-shelf printer �lled with conductive
ink (C1). PaperPulse is an instance of an integrated end-user develop-
ment environment (Section 1.1) and combines design, electronics, and
programming in a single streamlined work�ow, to guide non-experts in
making new physical paper interfaces (C5).

2. RetroFab [Ramakers 16] enables users to adapt existing phys-
ical interfaces (G2). Instead of manually modeling existing physical
interfaces in a software environment in order to adapt them, RetroFab
allows users to adapt existing interfaces using 3D scans (C2). After users
annotate the controls in the 3D scan, the system generates a 3D model
that retro�ts the original physical interface. Additionally the system sug-
gests a redesign of the physical interface that the user can adjust (C2). To
redirect interactions from the redesigned interface to the legacy interface,
RetroFab supports a toolkit of actuators and sensors that the system au-
tomatically puts in place inside generated model (C3). The behavior
of the electronic components, and thus the behavior of the legacy in-
terface, is altered using the Pulsation logic speci�cation technique (C4).
Retro�t models can be produced with any conventional 3D printer (C1).
After placing this 3D printed model over top of the original interface,
the retro�t interface allows for new functionalities, as speci�ed by the
user. Similar to PaperPulse, RetroFab is an instance of an integrated
end-user development environment (Section 1.1) and combines 3D mod-
eling, electronics and programming in a single streamlined work�ow to
guide non-experts in adapting existing physical interfaces (C5).

3. Pulsation enables non-programmers to specify the behavior of
physical interfaces (G1+G2). Although Pulsation can be used to
program any kind of sensor-based system, it is seamlessly integrated in
the PaperPulse and RetroFab vertical design tools. The visual Pulsation
logic speci�cation technique, targets non-programmers and is optimized
for specifying functional relationships between electronic components.
These relationships are especially relevant for the behavior of physical
interfaces (C4). Pulsation makes it convenient for non-programmers to
get started (low threshold), and at the same time allows for complex
behaviors (high ceiling) by supporting advanced timing models. As such,
it is possible to precisely specify output patterns of electronic components
over time, or match complex input signals. In contrast to traditional
visual programming techniques, Pulsation is speci�ed in the context of
the electronic components and does not require switching to separate

10 Introduction

views or tools for adapting the behavior (C5). Pulsation can directly
be deployed on embedded systems but also runs on desktop computer
systems.

4. Paddle [Ramakers 14] enables users to make changes to phys-
ical interfaces in real-time (G3). Making changes to the physical
material of interfaces in real-time, requires investigating materials that
quickly transform between di�erent states (C1). In the context of the
Paddle system, we investigate transformation techniques used in the de-
sign of 3D puzzles. These techniques are used in the design of a new
mobile device that users manually transform into various physical han-
dles. Especially in mobile settings, fast transformation techniques of
materials are relevant since physical construction kits or machinery are
too clumsy and too slow for mobile ad-hoc changes.

1.4 Dissertation Outline

This dissertation consists of eight chapters including this introductory chap-
ter. As a guide to the organization of the remainder of this dissertation, an
overview of the chapters is provided below:

Chapter 2 Related Work Previous endeavors related to the research
challenges outlined in this dissertation are surveyed. I provide an overview of
fabrication techniques for making electronic circuits, sensors, and 3D struc-
tures. Following this discussion, we consider the wide variety of visual pro-
gramming paradigms that are available nowadays. I also survey literature that
combines and streamlines multiple aspects of design and fabrication processes
into a single streamlined work�ow. Finally, an overview is provided of existing
techniques to author interfaces in real-time using transformable materials.

Chapter 3 PaperPulse: Designing and Fabricating Physical Interfaces
I present an integrated design and fabrication environment that allows novices
to make interactive physical interfaces on �exible substrates. A toolkit of elec-
tronic components is presented that easily integrates in �exible substrates.
PaperPulse also integrates an early version of the Pulsation logic speci�cation
technique. With example designs and user studies, I demonstrate the versatil-
ity and utility of the PaperPulse design tool for novices.

1.4 Dissertation Outline 11

Chapter 4 RetroFab: Adapting Existing Physical Interfaces I present
an integrated design and fabrication environment that allows novices to adapt
existing interfaces by making retro�t structures. A toolkit of electronic compo-
nents is presented to facilitate retro�tting the most commonly used components
in existing physical interfaces. Similar to PaperPulse, RetroFab integrates an
early version of the Pulsation logic speci�cation technique. With example de-
signs, use cases, and a user study, I demonstrate the versatility and utility of
the RetroFab design tool for novices.

Chapter 5 Pulsation 2.0: Visual Programming for physical interfaces
The user studies with PaperPulse (Chapter 3) and RetroFab (Chapter 4) re-
vealed several limitations of the Pulsation logic speci�cation technique that is
integrated in these design environments. This chapter, presents a novel logic
speci�cation technique, called Pulsation 2.0, that addresses those limitations.
Pulsation 2.0 is optimized for specifying logic behavior of sensor-based sys-
tems on microcontrollers but also runs on desktop computers for simulation
purposes.

Chapter 6 Paddle: Real-Time Physical Transformations I inves-
tigate how alternative techniques that allow for making changes to physical
interfaces in real-time. In this chapter, materials that can be physically trans-
formed are investigated. These materials are enriched with digital technology
to allow non-experts to author them. These techniques are used in the design
of a new mobile device that supports a variety of physical con�gurations. Es-
pecially during mobile use, physical controls need to transform in real-time

Chapter 7 Discussion and Future Work I consider aspects that be-
stride the individual chapters. This includes research problems at the intersec-
tion of digital fabrication and transformable interfaces. Furthermore a deeper
discuss of the di�erent user groups that can bene�t from this work is pro-
vided. Finally, I elaborate on the user-experience challenges that come with
computationally generated solutions and discuss how physical user interfaces
can seamlessly integrate in environments in the future.

Chapter 8 Conclusion To conclude, I summarize the contributions
of this dissertation.

12 Introduction

Chapter 2

Related Work

In this chapter, previous endeavors related to the research challenges outlined
in Section 1.2 are surveyed. First, an overview of fabrication techniques for
making electronic circuits and sensors, lays the foundation for authoring phys-
ical materials (C1) and making electronic circuits (C3). Next, the state of the
art in digital fabrication and 3D modeling reveals techniques to facilitate the
design process to make artifacts (C2) and additional processes for authoring
physical materials (C1). Following, an overview is provided of visual pro-
gramming paradigms (C4). Building on top of these discussions, we review
environments that streamline the process for making physical interfaces (C5).
Finally, an overview is provided on techniques for authoring physical materi-
als (C1) in real-time by covering research e�orts related to transformable user
interfaces.

2.1 Fabricating Electronic Circuits and Sensors

A wide variety of techniques exist to fabricate circuits and electronic sensors.
While breadboarding is the most popular technique for experimenting with
electronics, more advanced production techniques, such as chemical etching
and conductive inkjet printing oftentimes result in better integrated and higher
quality circuits. As such, there is an increasing interest to make these advanced
circuit production techniques accessible for non-experts.

14 Related Work

2.1.1 Electronic Rapid Prototyping Toolkits

Breadboarding is one of the most popular techniques for rapid-prototyping
with electronic components for novice and expert users. Breadboards are sol-
derless and therefore make it convenient to interconnect traditional through-
hole components. For starters however, the wide variety of components, such
as resistors, capacitors, shift registers, etc. needed to connect input/output
components is often overwhelming. The Phidgets platform [Greenberg 01] and
Calder toolkit [Lee 04] abstracts low level circuit details, such as H-bridge con-
structions for controlling DC-motors, and o�er input/output components that
directly connect to pins on the development board. To prevent users from
attaching components incorrectly to pins, .Net Gadgeteer [Hodges 13] stan-
dardizes the connectors among all components and includes an FFC-connector
(Flexible Flat Cable Connector) in every supported unit. Little Bits [Bdeir 12]
further facilitates the circuit construction process by eliminating wires. Here,
modular building blocks are interconnected using magnetic connectors that
snap together to form a functional circuit. Similarly VoodooIO [Villar 07]
eliminates the need for additional electronic components and wires by pro-
viding a �exible foam substrate in which prefabricated components, exposing
pins, connect in any con�guration. Every VoodooIO component integrates a
controller to transfer its ID and state over the �exible substrate to a connected
microcontroller.

Although these toolkits make prototyping with electronics accessible for
a wide variety of users, the circuits produced are less permanent, less robust,
and do not seamlessly integrate in every substrate, as compared to more circuit
board fabrication techniques.

2.1.2 Circuit Board Fabrication Techniques

Overall two techniques exist for fabricating integrated circuits: additive and
subtractive processes. Subtractive methods remove conductive material (e.g.
copper) from a substrate, leaving only the desired conductive pattern behind.
Additive methods on the other hand, add conductive materials on top of a non-
conductive substrate. In the following sections, we discuss the most popular
fabrication technologies used for both processes. A complete overview of all
circuit board manufacturing techniques, since its invention in 1930, is out of
scope � for this, we refer the reader to the work of Jawitz [Jawitz 97].

2.1 Fabricating Electronic Circuits and Sensors 15

Subtractive Circuit Fabrication Processes

Nowadays, a common method in industrial PCB fabrication is chemical etch-
ing [Jawitz 97]. PCB laminates, such as Bakelite or Kapton, are precoated
with copper. A mask, representing the circuit, is applied on top of the sub-
strate to protect the desired copper. Chemicals, such as ferric chloride are
then used to etch (remove) the remaining copper. Various techniques exist for
producing the chemical etching mask. We highlight three common methods.
First, with silkscreen printing, an etch-resistant ink is applied on top the de-
sired copper regions. In the second method, photoengraving, the copper-clad
laminate is entirely coated with a UV-sensitive photoresist. The photoresist
is then turned into an etching mask by selectively removing the photoresist
at locations were the chemical etching is allowed. A mask can be transferred
from a printed mask (using a regular printer) to the photoresist using UV light
and a chemical solvent. Alternatively, when higher resolutions are desired, the
mask is directly exposed to the photoresist using optical projection. The latter
photoresist removal technique is often referred to as �Direct Imaging�. The last
technique to realize the etching mask is called �Toner Transfer�. Laser printer
toner is an ideal etch resist as it carries a high percentage of pulverized plastic.
The toner is transferred from a special transfer paper on top of the copper by
applying heat (e.g. using a iron). Emerging the board into water allows the
paper to loosen, leaving the toner etching mask on the board.

Instead of chemical etching, a CNC milling machine1 or laser engraver
can also selectively etch the copper layer. Although these machines are very
precise, they come at a premium price. To save costs, one can also use a vinyl
cutter to etch or cut out copper traces [Savage 12].

Although most etching techniques originate from industrial production
methods, many subtractive techniques are also available in DIY kits. In con-
trast, Printem [Varun 15] is a technology speci�cally targeted for non-expert
use. In this technique, the inverse mask of the circuit is printed on top of the
special printem �lm using a regular inkjet or laser printer. Inside the printem
�lm, copper gilding foil is sandwiched between two substrates using a regular
adhesive on the bottom and a UV adhesive at the top. After exposing the
masked top-layer to UV light, the regions exposed to light stick to the top
layer, while the masked regions stick to the bottom layer. When separating
the layers, the top layer has the copper imprint of the circuit traces attached.

1www.othermachine.co

16 Related Work

Additive Circuit Fabrication Processes

Di�erent techniques exist to add conductive traces on top of various substrates.
Designing circuits using adhesive copper tape [Qi 14] is tedious but very ver-
satile as this kind of tape sticks to a wide variety of surfaces, including pa-
per, wood, walls, skin, etc. On the �ipside, making turns using tape is hard
and stretching the surface could break the tape. Conductive paint, such as
graphite-based Bare conductive paint2, makes it easier to produce hand drawn
traces [Mellis 13]. However, the ink has a high resistance (55 Ω/�) and is very
brittle. The silver-particle-based Circuit Scribe pen3 has better conductive
properties but can only be applied on paper-based substrates because of the
ballpoint tip. As this pen produces conductive traces by dragging it over a
substrate, this fabrication process can also be automated using a plotter4.

With advancements in conductive inks, new types of additive fabrication
processes were introduced. Some conductive inks can be directly applied
to substrates using a screen printing mask, thus eliminating toxic chemicals
needed for etching. Some inks however require an additional chemical or ther-
mal sintering step for the ink to reach full conductivity. Recently, there is
an increasing interest in silver nanoparticle ink, as the ink is viscous enough
to be used in markers5, industrial inkjet printers (e.g. Fuji�lm Dimatix), or
even o�-the-shelf desktop inkjet printers [Kawahara 13]. A chemical sintering
process between the ink and a substrate with a special resin coating ensures
the conductivity of routed traces. Although researchers experimented with
conductive circuit traces printed on origami folding structures [Olberding 15],
the traces printed using silver nanoparticle ink are brittle and often break at
folding creases.

Conductive threads provide a mean to integrate circuits in substrates that
are bendable or stretchable, such as paper or textiles. These kinds of threads
can be integrated during the paper [Coelho 09] or textile [Poupyrev 16] pro-
duction process, or sewed into the fabric at a later stage [Post 00, Buechley 08].
Inline with work on wearable sensors, Weigel et al. presented iSkin [Weigel 15],
an electronic circuit that can be worn directly on the skin as the substrate is
�exible, stretchable, and translucent. iSkin consists of di�erent layers of non-
conductive polydimethylsiloxane (PDMS) and conductive carbon-�lled PDMS
(cPDMS). Detailed circuit patterns are produced from cPDMS using a laser
engraver.

2www.bareconductive.com
3www.circuitscribe.com
4www.instructables.com/id/Paperduino-20-with-Circuit-Scribe
5www.agic.cc

2.1 Fabricating Electronic Circuits and Sensors 17

2.1.3 Thin-Film Electronic Sensors

Once the electronic circuit traces are produced, electronic components, such
as input and output components, a microcontroller, and a battery have to
be connected. Although techniques exist to attach through-hole or Surface-
Mounted Devices (SMD) directly to thin-�lm electronic circuits [Mellis 13],
these components are often bulky or expose small connection surfaces which
frequently cause electrical discontinuities. Hence, researchers presented various
novel sensor and processing technologies that integrate reliably and seamlessly
in �exible thin-�lm electronic circuits.

To allow non-experts to connect traditional electronic components reliably
to thin-�lm electronic circuits without requiring soldering, Hodges et al. pre-
sented CircuitStickers [Hodges 14]. CircuitStickers are �exible PCBs that inte-
grate traditional electronic components and expose enlarged connection pads at
the bottom of the sticker. As the bottom of the sticker is covered with Electri-
cally Conductive Adhesive Transfer (ECATT) tape, the stickers directly attach
to conductive circuit traces. Similarly the Lilypad platform [Buechley 08] o�ers
stitchable battery holders, sensors, and microcontrollers that easily integrate
in fabrics using conductive threads.

Continuing the seamless integration of sensors in substrates, Olberding et
al. [Olberding 13] present a thin-�lm capacitive multi-touch sensor that can
be cut to the desired shape using scissors. Electrodes are positioned in a
star or three shape topology to support various convex and concave shapes.
A simple calibration step is required to normalize the sensor readings from
partially cut electrodes. Foldio [Olberding 15] shows how to bring capacitive
sensing beyond �at surfaces by augmenting corners, edges, and faces of paper
origami structures with sensor pads. Additionally, techniques are presented to
track speci�c deformations of origami structures, such as the angle of folds,
or the amount of shearing, linear elongation, or rotation. Using integrated
(printable) receiving and transmitting electrodes for capacitive sensing, these
deformations can represent input parameters in the interactive system. Qi
and Buechley [Qi 10] took this idea one step further and explored techniques
to electronically track the state of paper popup structures [Carter 99], such as
tabs and rocker arms. As RFID antennas are convenient to print on substrates,
researchers investigated techniques that leverage passive RFID tags to recog-
nize user interactions. PaperID [Li 16] monitors low-level channel parameters
of the RFID communication using machine learning techniques to identify user
interactions, such as touch, sliding, turning, swiping, and movements of tags or
hands. RapID [Spielberg 16] uses a similar technique to realize an easy-to-use

18 Related Work

framework for detecting covered RFID tags.

Besides binary or linear input sensors, a wide range of thin-�lm �exible 2D
touch pad sensors have been presented. PyzoFlex [Rendl 12] is a pressure sen-
sitive foil consisting of a piezoelectric material that is sandwiched in between a
layer of driving and sensing electrodes. The piezoelectric material develops an
electrical charge proportional to the change in mechanical stress. However, this
raw signal data is not usable for absolute measurements as the electric charges
decay with a time constant. This discharge follows a predictable exponential
function and every deviation of the predicted value must be caused by a new
pressure change at that location on the sensor. Using a similar layered con-
struction with a di�erent sensor layout resulted in the FlexSense [Rendl 14]
system. In addition to detecting pressure changes, FlexSense accurately re-
constructs the deformation of an A4 sensor surface. The surface integrates 16
piezoelectric sensors of which readings over time are integrated in a machine
learning algorithm. In order to detect touch, pressure, proximity, and sheet
folding in a single substrate Gong et al. presented PrintSense [Gong 14], which
combines di�erent kinds of capacitive sensing techniques. PrintSense consists
of 42 1.5cm2 electrodes of which one interleaved set will be used as receiving
electrode while the others serve as sending electrodes. When a �nger touches
an electrode, its rate of discharge changes. In proximity mode, every electrode
is connected to an analog sensing circuit, which detects noise in any of the
readings caused by hovering body-parts. In this mode, two additional 3x6cm
electrodes provide greater transmission range. Additionally, by measuring the
distance between speci�c pairs of electrodes, folding over an edge of the sen-
sor detectable. By shaping the electrodes as �inter-digitated� (IDT) �ngers,
di�erent levels of pressure are detected using galvanic skin response (GSR)
measures. A similar architecture of electodes is used by Gong et al. [Gong 11]
to realize thin-�lm pressure sensitive �oor pannels.

To realize touch sensor pads that are worn directly on skin, the sensor has
to be stretchable as well as �exible. Kramer et al. [Kramer 11] presented a
thin-�lm keypad consisting of twelve keys. The keypad is composed of poly-
dimethylsiloxane (PDMS) embedded with micro�uidic channels of Eutectic
Gallium-Indium (eGaIN) alloy. The sensor however is fabricated with a com-
plex photolithography process and a substantial amount of pressure is needed
to operate the pads (approximatly 10 times as much force as operating a reg-
ular keyboard). In contrast, the sensors pads used in iSkin [Weigel 15] are
convenient to customize by cutting the carbon-�lled PDMS �lm, that is used
for both the receiving as well as transmitting electrodes, to a particular shape
using a laser engraver. The two electrodes are then separated using a perfo-

2.1 Fabricating Electronic Circuits and Sensors 19

rated layer of non-conductive PDMS. The custom-shaped electrodes are used
for both resistive as well as capacitive sensing, in order to distinguish between
light and �rm touches.

Researchers also explored integrating sensors in fabrics. Parzer et al. [Parzer 16]
realized a pressure-sensitive textile by separating two fabrics consisting of sens-
ing lines using a force sensitive material (Eeonyx EeonTex LG-SLPA). Alterna-
tively, driving and sensing lines needed for a 2D touch pad can be integrated in
the fabric during the weaving process [Poupyrev 16]. Sugiura et al. [Sugiura 12]
presented a sensor to measure tangential forces in stockings. The expansion
and contraction of the stocking is estimated by considering the transmissivity
of infrared light passing through the stocking using a photore�ector.

Besides input sensors, researchers also explore technologies for making thin-
�lm output sensors. Foldio [Olberding 15] supports actuated bending of paper
as an output modality. This sensor consist of a printed resistor realized using
screen printing or conductive inkjet printing, that is overlaid with polyethelyne
tape. Once the resistor heats up, the polyethelyne patch expands while the
base paper layer retains it length. This results in an actuation of the compound
material. Perumal and Wigdor [Varun 15] as well as Coelho et al. [Coelho 09]
demonstrate how to integrate a speaker in a substrate by realizing a voice
coil and placing an electromagnet behind it. Alternatively, piezo speakers
can be integrated into paper to realize a paper headphone [Shorter 14]. More
high-�delity visual output is o�ered by thin-�lm ElectroLuminescence (EL)
displays [Olberding 14]. An electroluminescent panel is in essence a capaci-
tor where the insulator (dielectric) between the outside plates is a phosphor
that gives o� photons when the capacitor is charged. By making one of the
contact panels transparent and printing conductive material on the other sub-
strate, in a speci�c shape, this particular shape emits light. Devendorf et
al. [Devendorf 16] show how displays seamlessly integrate in fabrics by weav-
ing conductive treads in textiles. The treads are coated with thermochromic
pigments and thus change color in response to heat caused by an electric charge.

For the remaining components required to make electronic circuits, such as
a power supply [Bates 00] and a microcontroller [Myny 12], thin-�lm solutions
are becoming available. For example, Enfucell6 is a commercially available soft
thin-�lm battery with a 90mAh capacity. Karagozler et al. [Karagozler 13]
showed how a high voltage spike (lasting up to 50ms) is generated by rubbing
Te�on material over a conductive sheet. Researchers produced 8-bit organic
microprocessors on plastic foils. This microcontroller is programmed by print-

6http://www.enfucell.com

20 Related Work

ing assembler instruction sets in a Write Once Read Many (WORM) memory
using conductive inkjet technologies [Myny 12].

2.2 Digital Fabrication and 3D Modeling

The current popularity of 3D printing and digital fabrication has led to a
number of recent works in the HCI literature related to digital fabrication
processes and 3D modeling.

2.2.1 Simplifying and Accelerating the Fabrication Process

This dissertation builds upon work that automates, simpli�es, or accelerates
the fabrication process of 3D objects. For example, Fabrickation [Mueller 14b]
allows users to rapidly prototype 3D objects by substituting parts of the model
with LEGO blocks, thus reducing print time. Autodesk's 123D Make soft-
ware solution7 converts 3D models into �at laser cut designs that can be
assembled into a 3D model using either �nger joints or by stacking layers.
WirePrint [Mueller 14a, Peng 16] allows one to fabricate a wireframe preview
version of a 3D model and evaluate its look and feel before fabricating the
�nal high-�delity version. The time between design iterations is also reduced
by printing on top or removing parts of the object produced in the previous
design iteration. This approach is taken by Teibrich et al. [Teibrich 15]. They
integrate a milling head to remove obsolete parts and use a rotating platform
to access di�erent regions of the object without having to remove all previously
printed layers. Alternatively, 3D printers can print directly on top of existing
objects [Chen 15].

Lau et al. provide a system that decomposes 3D models of furniture into
its constituent components and connectors, allowing users to easily fabricate
the discrete elements [Lau 11]. LaserOrigami [Mueller 13] eliminates the man-
ual assembly process of multiple parts by automatically folding acrylic sheets
using a laser cutter. LaserOrigami achieves this by heating up selected regions
of the workpiece until they become compliant and bend down under the force
of gravity. As laser cutters are traditionally faster than 3D printers, Card-
BoardiZer [Zhang 16] converts a 3D model into planar or volumetric foldable
patterns that are fabricated using a laser engraver or vinyl cutter. However,
laser cutters do not o�er multi-material fabrication. Hence, Perumal and Wig-
dor [Wigdor 16] devised a multi-material layered sheet to use in a laser cutter.

7www.123dapp.com/make

2.2 Digital Fabrication and 3D Modeling 21

By stacking a rigid, bendable, and �exible layer, the laser engraver selectively
cuts through one or multiple layers to realize joints with di�erent properties. A
similar approach is taken by HotFlex [Groeger 16] which is a substrate allow-
ing for post-print customizations of 3D printed objects. By inserting heating
elements during or after the 3D printing process, the material computation-
ally switches between a solid and deformable state. As such, variations on the
original design are convenient to realize without starting over the 3D printing
process.

2.2.2 Facilitating the 3D modeling Process

To facilitate the digital modeling process, MixFab [Weichel 14] provides users
with a mixed-reality environment where real-world objects are incorporated
into the design of virtual 3D objects which can then be fabricated, thus making
it easier for users to design with existing, tangible objects. SketchChair [Saul 11]
speci�cally eases the 3D modeling process for making custom designed chairs.
The process starts from a 2D side view of the chair that the user sketches, after
which the system generates a 3D model by extruding the sketch. When the user
changes parameters of the design, the chair's stability is tested using a physics
simulation. The �nal model is converted into 2D parts consisting of �nger
joints that are produced using a laser cutter. Similarly Teddy [Igarashi 07] al-
lows non-experts to model stu�ed animals starting from a 2D sketch. Sketches
are converted into 3D models by in�ating enclosed regions. Plushie [Mori 07]
builds further on this work and converts the �nal 3D model back into a 2D
fabric layout that can be stitched together to realize the �nal stu�ed animal.
ModelCraft [Song 06] facilitates making changes to existing 3D models by al-
lowing users to make pen annotations onto a physical representation of the
model consisting of Anoto paper. These pen annotations represent extrusions,
cuts, and �llet operations. All operations are digitized and applied to the
original 3D model.

Reform [Weichel 15b] introduces the concept of �bidirectional fabrication�
using a 3D printer that extrudes clay. When the 3D print is �nished, the
user manipulates the clay object further to adjust the design. In the next
design iteration, the printer �rst scans the adjusted clay model to digitize all
changes. There are also a number of electronically augmented measurement
tools to facilitate modeling existing physical objects. SPATA [Weichel 15a]
presents a digitally adapted version of a caliper and protractor. Using these
tools distances and angles are measured in physical space and automatically
entered in the digital model that the user is working on. To automatically

22 Related Work

model more complex object curvatures AR-Jig [Anabuki 07] consists of an
array of pins that are pushed against the object in order to obtain the inverse
shape.

The Constructable system [Mueller 12] reduces the need for making upfront
design decisions when using laser cutters. Instead of designing a 2D sketch in
a design environment, users interact with the laser cutter by drafting directly
on the workpiece using hand-held laser pens. An overhead camera tracks these
interactions, and instructs the laser cutter after beatifying the hand drawn
paths. In a similar vein, Tactum [Gannon 15] facilitates the design of wear-
ables by manipulating a projected 3D mesh directly on the body using touch
interactions. When the design is completed, the �nal mesh is produced us-
ing a 3D printer. This traditional two-step fabrication approach (design then
fabricate) is eliminated in ExoSkin [Gannon 16] where the user moves around
a skin-safe clay extruder directly on the body. Projected dynamic toolpaths
assist the user in realizing designs. Similar handheld extruders are used in the
3Doodler8 and Protopiper [Agrawal 15] system to provide a means to manually
sketch respectively small or large (room-size) physical objects.

2.2.3 Adding Interactivity to Fabricated Objects

A number of projects have developed techniques to aid the construction of
electronically augmented physical objects. Makers' Marks [Savage 15] is a
system that allows users to create complex physical objects that incorporate
elements such as hinges, parting lines and electronics using sculpting mate-
rial and stickers for annotation. As it is often hard to represent the ex-
act location and orientation on curved 3D models using stickers, Jones et
al. [Jones 16] present an alternative approach. Instead of using stickers, a
toolkit of widget blanks are designed with unique �ducial markers on top.
The user partially embeds these widget blanks in the clay. After the clay
model is scanned, the system recognizes and replaces the widget blanks with
mounting structures of electronic components after which the �nal model is
3D printed. The Enclosed [Weichel 13] design tool also makes it easier to
fabricate interactive objects. This software environment enables users to eas-
ily generate laser-cuttable enclosure structures that hold together electronic
components. PipeDream [Savage 14] automatically routes pipes through 3D
models to allow for post hoc insertion of conductive materials. In a similar
vein, SurfCuit [Umetani 16] routes circuit channels on top of 3D models based
on standard circuit schematics. After the 3D printing process is �nished, the

8www.the3doodler.com

2.3 Visual Programming Methodologies 23

user manually inserts copper tape in the circuit channels. Sauron [Savage 13]
automatically modi�es the internal geometry of 3D models to make it suitable
for vision-based sensing. In this system, all interactive widgets are passive
and tracked from a camera integrated in the 3D model. Sauron assist users
in placing the camera and mirrors in order to track the state of all interactive
widgets. Alternatively, the state of interactive widgets can also be tracked
using a wireless accelerometer integrated in every knob [Hook 14].

A variety of projects also explore adding interactivity at the time of fabri-
cating the original object. Ishiguro et al. [Ishiguro 14] presented a technique
to 3D print speakers directly into a 3D model. The technology is based on
principles of electrostatic sound reproduction. As the speaker only consists of
an electrode and a diaphragm, the sensor can take on any shape and can be
produced using conventional 3D printers. Willis et al. [Willis 12] 3D prints op-
tical light sensing pipes. By printing the pipes in transparent material and the
cladding in support material, the di�erence in material density allows for Total
Internal Re�ection (TIR) to occur. As such, light signals can be transmitted
through the tubes. Using these tubes, buttons, movement sensors, and touch
sensors are realized. To seamlessly integrate conductive tracks directly in ob-
jects at fabrication time, Fused Deposition Modeling (FDM) printers start to
support conductive �laments. PrintPut [Burstyn 15a] leverages this technol-
ogy to realize 3D printed touchpads, pressure sensors, sliders, and �ex sensors.
The Voxel8 3D printer9 is speci�cally targets fabrication of electronically aug-
mented 3D objects by supporting conductive silver ink.

2.3 Visual Programming Methodologies

To allow users without a programming background to specify logic behavior, re-
searchers investigated techniques including visual programming [Kelleher 05],
programming-by-demonstration [Hartmann 06, Hartmann 07], and tangible pro-
gramming [Lysecky 09, Bdeir 12]. The work in this dissertation relates to vi-
sual programming methodologies. In visual programming paradigms, visual
building blocks are used to compose programs instead of writing code state-
ments. These visual programming approaches simplify programming by ei-
ther preventing syntax errors or by tailoring or simplifying the language for a
speci�c domain of programming problems [Kelleher 05]. Visual programming
approaches make it convenient for new user populations to program systems
or facilitate teaching of programming languages.

9www.voxel8.co

24 Related Work

2.3.1 General-Purpose Visual Programming

LOGO [Abelson 74] is considered as the �rst child-friendly programming lan-
guage (1967). LOGO is a general-purpose functional programming language,
although the language is well known and mainly used for its turtle graphics
features. Turtle graphics consist of a turtle robot that is programmed to move
on a Cartesian plane. In many implementations, the turtle robot has a pen
attached and leaves behind a trace everywhere it moves. As such, arbitrary
complex shapes are created by programming the turtle robot to move. Over
the years, many alternatives and extensions for LOGO have been created, in-
cluding KTurtle10 and StarLogo [Colella 01]. StarLogo includes features to
program multiple turtle robots in parallel and is therefore ideal in agent-based
simulations. Although the original version of LOGO is textual, the StarLogo
Nova11 implementation o�ers visual building blocks and drag-and-drop inter-
action styles to compose code statements.

Drag-and-drop programming languages consist of visual blocks, represent-
ing code constructs, such as variables, keywords, statements that are nested
to realize arbitrary complex statements. These visual building blocks of-
tentimes have speci�c shapes to make clear which types of blocks are valid
in a speci�c context (Poka-yoke constraining) and thus avoid syntax errors.
Scratch [Resnick 09] is the most popular drag-and-drop programming language
and is often used in schools to introduce children between 8 and 16 years
to programming. Scratch is most suited for making animations and small
games. Oftentimes it is also used in the classroom to enrich math and science
projects with computing. A variety of alternatives for Scratch exist, including
Snap [Harvey 14] which extends Scratch with options, including function as
�rst class citizens. Other systems build on top of these languages and o�er ad-
ditional functionalities for programming Arduino development boards, such as
Scratch4Arduino21, Snap4Arduino12 or household appliances e.g. Scratchable
devices [Ash 11]. The Alice 3D programing platform [Conway 00] shares inspi-
ration with Scratch but targets �rst year computer science students. The plat-
form o�ers an object oriented language oriented towards making virtual reality
scenes. Using this platform, students experiment with concepts in computer
graphics, such as vectors, cameras, transformations, etc. The AppInventor
platform [Wolber 11] o�ers a similar drag-and-drop programming environment
but includes functionalities to facilitate making Android applications.

10https://edu.kde.org/kturtle
11http://www.slnova.org
12http://snap4arduino.org

2.3 Visual Programming Methodologies 25

Although these general-purpose visual programming paradigms o�er a wide-
variety of functionalities (high ceiling) similar to regular textual programming
languages, users �rst need to learn di�erent programming constructs, such as
variables, functions, loops, etc.

2.3.2 Special-Purpose Visual Programming

Instead of learning non-programmers all constructs available in traditional pro-
gramming languages, special-purpose visual programming approaches use al-
ternative visualization techniques and focus more on speci�c types of appli-
cations. Finite-State machines are visualized using state diagrams and are
well suited for applications that can be modeled in di�erent states. The
D.tools [Hartmann 06] design environment o�ers designers state diagrams to
model basic interactions with prototyped devices. Finite-state machines how-
ever have several limitations. For example, there is no memory available for
saving data, all memory must be encoded in states.

A variety of programming techniques consist of visual building blocks that
are linked together. Here we can identify two types: control �ow and data�ow
programming. Control �ow programming is the traditional type of program-
ming, a sequence of instructions is executed sequentially. Instructions use or
operate on data that is linked to the instruction. In data�ow programming
in contrast, some data moves through a sequence of instructions. Instruc-
tions manipulate the data once all inputs become valid. The output is passed
onto the next instruction. PureData [Puckette 96] is one example of a visual
data�ow programming language. It is most often used to process and trans-
form audio signals. In PureData, various operations can be linked after which
the audio signal is passed at a certain rate through the di�erent operations.
LabView [Wells 96] is another instance of a visual data�ow programming lan-
guage which is most often used to engineer control systems. PureData and
LabView both target expert usage.

Although originally inspired by LabView, the visual programming lan-
guages supported by LEGO Mindstorms, including RCX code [Barnes 02],
RoboLab [Erwin 00], and Mindstorms NXT [Kim 07] are control �ow lan-
guages. These visual languages o�er easy to compose operations for controlling
robots. Some visual programming languages even consists of both data�ow and
control �ow visual programming techniques. eBlocks [Lysecky 09], for exam-
ple, supports both conditional statements to jump to the correct branch of
code, as well as interlinked sequences of operations that manipulate and trans-
form signals. Control �ow visual programming paradigms are also widely used

26 Related Work

to facilitate rendering graphics data. Examples include quartz composer13 for
composing graphics in user-interfaces, NodeBox14 for rendering parametric 2D
graphics, and Grasshopper Rhino15 for rendering parametric 3D models.

With the increasing popularity of easy-to-deploy sensor units and personal-
ized online services (e.g. social media, online retail stores, cloud storage, etc.),
programming techniques have been developed that allow users without any
programming background to interconnect sensors and online services. These
systems oftentimes aim to simplify the visual language and allow novices to
specify logic without following any tutorials. Therefore, these languages are
limited to simple trigger-action programs and thus provide a low ceiling. The
most popular platform in this category, IFTTT �If This Then That�16, o�ers a
simple interface to interconnect pairs of online services or network connected
sensors. Atooma17 is a similar platform but supports multiple triggers and
actions in a single conditional rule. Ur et. al [Ur 14] showed that these kind of
extensions are still easy to grasp by inexperienced users.

In contrast to the trigger-action programming paradigms discussed in the
previous paragraph, Spacebrew18 and IBM NodeRed19 visual programming
platforms target engineers and electronic hobbyists. These systems facili-
tate interconnecting custom-build sensing units (e.g. using Arduino). With
Spacebrew, one visually interconnects systems that expose websockets using a
publisher and subscribe mechanism. IBM NodeRed, provides more advanced
options to process the input signal before redirecting it further to the target
websocket.

2.4 Design Environments for Sensor-Based Interac-

tions

Besides the individual systems that facilitate fabricating electronic circuits,
produce 3D objects, or program logic, as discussed in the previous sections, a
variety of systems integrate multiple of these aspects into a single streamlined
work�ow. These integrated design environments assist users in transitioning

13https://developer.apple.com/library/content/documentation/GraphicsImaging/Conceptual/
QuartzComposerUserGuide

14https://www.nodebox.net
15http://www.grasshopper3d.com
16https://ifttt.com
17https://www.atooma.com
18http://docs.spacebrew.cc
19http://nodered.org

2.4 Design Environments for Sensor-Based Interactions 27

between design iterations or/and provide an end-to-end solution to assist from
ideation until realization.

To assist programmers in specifying logic for electronic components, re-
searchers developed toolkits consisting of easy to assemble electronic compo-
nents and microcontrollers with well-de�ned programming interfaces, such as
.Net Gadgeteer [Hodges 13], Phidgets [Greenberg 01], iStu� [Ballagas 03], The
Calder Toolkit [Lee 04]. Autodesk's 123D Circuits platforms20 supports im-
mediately testing of code and the electronic circuit using a software simulator.
Midas [Savage 12] provides an integrated environment for augmenting existing
objects with electronics. After loading a photo of the design and overlaying it
with capacitive sensor pads, the system generates circuit traces to the edges of
the design. These traces are then cut out of copper foil using a vinyl cutter.
Touches on the sensor pads can be linked to prerecorded actions on a computer
or forwarded to other applications using websockets. Foldio [Olberding 15] goes
beyond �at designs and allows users to add sensor pads to 3D models. The
3D model is then converted into a paper folding model which also routes all
sensor pads using circuit traces to a single connection region. Foldio designs
are produced using conductive inkjet printers or silkscreen printing.

Several design environments also empower non-programmers to de�ne sensor-
based logic. Some use visual programming techniques with building blocks,
such as ScratchForArduino21, Modkit [Millner 11], and eBlocks [Lysecky 09];
other systems support specifying basic events by linking handwritten keywords
to electronic components [Block 08]. Boxes [Hudson 06] provides a toolkit con-
sisting of thumbtacks, tin foil, and a microcontroller to augment very early
stage cardboard prototypes with interactivity. The microcontroller uses ca-
pacitive sensing to recognize user's touches on thumbstacks and tin foil and
communicates with a computer that links these events to recorded mouse ac-
tions. To realize higher-�delity prototypes, d.tools [Hartmann 06] provides an
integrated environment for designing, testing, and analyzing di�erent versions
of prototypes. In design mode, non-experts specify sensor logic by relating
input events to output actions using a state chart visualization. Instead of
specifying input events using a keyboard and mouse, input signals are demon-
strated in physical world, with the respective sensors, using a programming by
demonstration paradigm (Section 2.3). Alternatively, d.tools allows for writ-
ing more complex program code with the help of a programmer. In test mode,
user interactions with the prototype are logged and synchronized with a video
recording of the test setup. In analyze mode, the designer gets an overview of

20www.123dapp.com/circuits
21www.s4a.cat

28 Related Work

the interaction model and the video recordings. aCAPpella [Dey 04] provides
a design environment for linking more high-�delity input sensors, such as we-
bcams, audio, RFID readers to output actions. The system �rst records the
events from all the sensors that are attached. Then the user selects the rele-
vant events from the recordings and links these events to output actions. When
these highlighted events are recognized in the future, the system executes the
associated output action.

Some design environments are also entirely physical, such as the Little Bits
toolkit [Bdeir 12] which provides physical building blocks for both sensors as
well as logic elements, such as �lters, delays, and inverters. PICL [Fourney 12]
is a general-purpose hardware circuit learning unit that accepts analog sensor
readings as input and converts it to an output value via a learning function.
This learning function is speci�ed by the user using the controls on the PICL
unit. PICL can be trained as a linear classi�er (output 0 or 5v) or a linear
regression mapping (output in between 0 and 5v).

2.5 Real-Time Transformable User Interfaces

Fabricating physical models using DIY or industrial machinery (Section 2.2)
is oftentimes a slow process lasting a few hours up until a few days to real-
ize the �nal artifact. As such, real-time changes of physical models are not
yet possible with these technologies. Instead of using machinery to change a
physical artifact, in this section, we explore artifacts that consist of �smart ma-
terials� instead. Smart materials transform themselves or can be transformed
to di�erent physical con�gurations quickly. Although transformable materials
are traditionally used in paper-like interfaces [Gallant 08, Holman 05] and de-
formable mobile devices [Lahey 11], advancements in the transformable prop-
erties of these materials and engineering principles advanced make it possible
to start using these concepts for switching between di�erent form-factors in
real-time [Follmer 13].

2.5.1 Manual Transformable Interfaces

Holman et al. [Holman 05] presented a system called PaperWindows which
allows paper to be used as a medium for representing digital information. Pa-
perWindows tracks sheets of paper and users' �ngers with an optical tracking
system. By projecting digital content on top of sheets of paper, every sheet
provides a window to digital information. Data is transferred between windows
by gesturing with hands and �ngers. Building on top of this work, researchers

2.5 Real-Time Transformable User Interfaces 29

explored various interaction concepts that leverage bending, folding, or rolling
of paper-like devices. Gallant et al. [Gallant 08] explored interactions with
squeezing, folding, or bending �exible substrates. Although an optical tracking
system was used to track the state of the foldable device, output was provided
on a separate monitor. FoldMe [Khalilbeigi 12] is a collection of transformable
devices with two or three �xed hinges. The position and angle of the slates are
tracked using optical tracking system in order to project visual content on top.
Various interaction techniques are explored, including �ipping and folding, to
navigate through content. Additionally, some scenarios use the angle of the
slate to provide continuous control over parameters. Using a similar tracking
and projection system, Xpaaand [Khalilbeigi 11] bridges the gap between dis-
plays of di�erent sizes. Xpaaand works similar to an ancient paper scroll which
is rolled in and out. Resizing the device is used as a means for (semantic) zoom-
ing, navigating through content, and switching between applications. Besides
rolling paper in and out Lee et al. [Lee 08] explores the concept of adjustable
screen sizes by augmenting folding fans and umbrellas. To enable markerless
tracking of paper sheets, Steimle et al. [Steimle 13] presented Flexpad, a sys-
tem that reconstructs the shape of a sheet of paper from depth information of
a single Microsoft Kinect camera. By distorting the projected information ac-
cordingly, the paper is augmented with digital information. Flexpad presents
a diverse set of spatial interaction techniques including, curved cross-cuts in
volumetric imaging, animating virtual paper characters, and slicing through
time in videos.

Besides interaction techniques, various projects also investigated engineer-
ing techniques to make transformable devices self-contained. Starting with
Hinckley et al. [Hinckley 09] dual screen tablet computer which integrated two
PDA's connected with a hinge. The postures of the device support di�er-
ent nuances of individual or collaborative work by measuring the orientation
and angle between both displays. The Gummi [Schwesig 04] prototype was
the �rst self-contained bendable device consisting of a rigid screen mounted
on top of a �exible layer which integrates bend sensors. Besides navigating
through content, such as maps and videos, bending interactions were also used
for text-entry. PaperTab [Tarun 13] brought the original idea, mocked up in
PaperWindows [Holman 05], to life. PaperTab uses touch sensitive electronic
ink (E-ink) displays, each integrating an electro-magnetic tracker for location
tracking. Using similar display technology, PaperPhone [Lahey 11] presents a
bendable mobile device in which bend gestures are used to, for example, navi-
gate through contacts, or control a music player. ReFlex [Strohmeier 16] is a
similar prototype of a bendable phone but also integrates vibrotactile sensation

30 Related Work

and audio feedback for providing feedback during the bending interaction. For
example, when navigating an e-book using Re�ex, users feel and hear pages
�ip. These kinds of e-reading experiences with bendable devices are also ex-
plored in Bookisheet [Watanabe 08]. However this earlier prototype did not
include a display and instead provided visual output on a separate screen. In a
controlled experiment Wightman et al. [Wightman 11] showed that for single
page navigation, bending interactions are as e�cient and result in fewer errors
as compared to button techniques on traditional e-readers and mobile devices.
HoloFlex [Gotsch 16] explorers the concept of holographic imaging on �exi-
ble mobile devices. Bend gestures are used to navigate the Z-axis, a concept
also explored extensively by Le�ar et al. [Le�ar 14]. Rendl et al. [Rendl 16]
explores novel opportunities for using a �exible touch and grip sensitive e-
ink display as a second interactive screen for smart phones. Their prototype,
called FlexCase, integrates the FlexSense [Rendl 14] foil (Section 2.1.3) and an
e-ink display inside a display cover for regular smart phones. Flexible phones
have also been explored in the context of wearable computing. For example,
when bending a phone to a wristband, the content adjusts [Tarun 11]. Ad-
ditionally, when moving or turning the arm, content moves along to ensure
readability [Burstyn 15b].

Several researchers conducted user elicitation studies to gain a deeper un-
derstanding of how bends, folds, and free-form deformations intuitively map
to actions in digital interfaces. Studies using PaperPhone [Lahey 11] show
that there is a strong agreement in the users' mental model for performing
bend gestures when spatial or directional cues play an important role. For
example, there is an intuitive mapping for linking bend gestures in an icon
navigation task (up/down/left/right) or page navigation in e-books. In con-
trast, this mapping is harder when controlling, for example, a music player.
Kim et al. [Lee 10] asked their participants to deform three types of passive de-
formable materials: a thin plastic sheet, paper, and an elastic cloth, according
to how they thought would be appropriate for various actions, including, acti-
vating/deactivating the device, zoom-in/out, copy, delete, etc. The researchers
identi�ed 7 types of deformations, including bending, twisting, folding, rolling,
crumpling, tearing, and stretching. Their results show a higher agreement for
materials that are more pliable. In line with these results, experiments by
Kildal et al. [Kildal 12] show a preference towards more �exible materials, as
these are more comfortable and accurate to bend. Instead of mapping defor-
mations to actions in interfaces, bending gestures are also used for entering
passwords [Maqsood 14] or select targets on phones that are out of reach for
thumb interactions [Girouard 15].

2.5 Real-Time Transformable User Interfaces 31

Researchers also conducted controlled experiments to assess the perfor-
mance and user experience when using bend gestures for interacting with
digital information. Using a �exible input-only device connected to an ex-
ternal display for output, Kildal et al. [Kildal 13] compared traditional direct
touch (Touch Condition) with two hybrid deformation-plus-touch input tech-
niques: bending and twisting the device, plus either front- or back-touch (De-
formTouch vs DeformBackTouch condition). While participants performed an
image-docking task, all three interaction techniques showed the same e�ciency
in task completion. However, participants perception on their performance and
physical demand while performing the tasks, was signi�cantly better for De-
formTouch as compared to DeformBackTouch or the Touch condition. More
than a third of the participants also reported bending inwards to be unnat-
ural and requiring more force than bending outwards. This last observation
is consistent with study results of Warren et al. [Warren 13]. Ahmaniemi et
al. [Ahmaniemi 14] compared the performance of two-implementations of bend
gestures (absolute mapping, and relative mapping using speed) for performing
di�erent target selection tasks. Although absolute mapping showed improved
performances, the relative bend gesture mapping showed a better match with
the Fitts' Law model and scored better on user experience. In contrast to
earlier studies, showing a clear preference for bending and folding interactions
during directional manipulations [Lee 10], such as page navigation, speed, or
height control, the performance results of Ahmaniemi et al. show that bending
equally suits non-directional manipulations, such as color depth control.

A number of interfaces have also been presented that go beyond trans-
formable 2D surfaces and tap into manually transformable 3D sculptures and
objects. The seminal work by Piper et al. [Piper 02], Illuminating clay, con-
sist of a workbench to perform hands-on landscape analysis using clay. The
clay terrain model is captured and analyzed using a laser scanner and to-
pography information is projected back on the clay model with a projector.
Topobo [Ra�e 04] is a construction kit for making characters, such as animals,
that are animated with integrated mechanical actuators. After assembling the
character, the animation is programmed by demonstrating the movements with
the character. After this recording, the character repeats the demonstrated
movements. Haptic Chameleon [Michelitsch 04] presents a vision for clay-like
transformable physical controls that adapts its a�ordances and constraints
to the task at hand. The Rock-Paper-Fibers prototype [Rudeck 12] partially
implements this vision using a bundle of optical �bers that users manually re-
shapes to represent controls, including a radio-buttons, a slider, play, or pause
button. However, users still interact with these controls using �nger strokes.

32 Related Work

In contrast, when interacting with real world controls, one uses a wide variety
of precision and power grasps. This is the essence of the Paddle transformable
phone (Chapter 6).

2.5.2 Actuated Shape-Changing Interfaces

Besides manual transformable interfaces, there is also a diverse track of research
focusing on actuated shape-changing user interfaces. Although, changing the
shape of physical materials has been used for a wide variety of purposes, we
focus on their usage in interactive information systems in mobile settings. For
an overview on shape-changing interfaces in other areas, such as art, fashion
clothing, and furniture, we refer the reader to the article of Rasmussen et
al. [Rasmussen 12].

Early versions of shape-changing phones integrate mechanical motors (e.g.
servos) to control, for example, the thickness of the phone [Hemmert 10].
Changing the thickness of phones can be a subtle alert for incoming mes-
sages or re�ect the number of pages left while reading a book. Alexander et
al. [Alexander 12] scaled this approach to a matrix of 9 displays that indepen-
dently tilt. As such, the tablet-sized form factor takes on di�erent con�gura-
tion to physically re�ect the digital content or support collaborative settings.
Taking this approach even further, inFORM [Follmer 13] is a shape changing
table consisting of a matrix of 900 independently moving rods. By projecting
content on top of these rods, the shape of the table re�ects digital information
or provides physical a�ordances and constraints for interactive controls.

To integrate mechanical actuation mechanisms more seamlessly into mobile
form factors, researchers investigated integrating Shape-Memory Alloys (SMA)
wires in devices. By integrating four SMA wires in an E-ink display form fac-
tor, MorePhone [Gomes 13] realizes a phone that bends all corners indepen-
dently to provide various kinds of visual and haptic alerts to users. Hawkes et
al. [Hawkes 10] takes these engineering principles a step further and presents
a substrate consisting of custom designed shape-memory hinge actuators to
automatically fold simple origami structures. To capture the wide variety of
possibilities for shape change, Roudaut et al. [Roudaut 13] presented the con-
cept of �shape resolution� according to the Non-Uniform Rational B-splines
(NURBS) geometrical model. In contrast to display or touch resolution, shape
resolution represents the properties of a surface to change in shape. Similar to
manually transformable interfaces, researchers also conducted user elicitation
studies to investigate how output parameters of information systems map to
changes in shape [Pedersen 14].

Chapter 3

PaperPulse: Designing and Fabricating Physical

Interfaces

3.1 Introduction

Advancements in fabrication tools for electronic circuits, such as conductive
pens, threads, inkjet printers [Kawahara 13] and vinyl cutters [Savage 12] in-
troduced accessible techniques to augment �exible substrates with electronics.
Hence, an increasing number of domains, such as research, maker movement,
engineering, and marketing express their interest in these technologies. Early
prototypes include, low-cost paper versions of PCBs [Kawahara 13], interactive
books [Qi 10, Qi 14], and posters [Shorter 14]. In the context of this disserta-
tion, we explore using novel fabrication techniques, such as conductive inkjet
printing, to make fully-integrated physical interfaces (C1). More speci�cally,
in this chapter, we present a novel design and fabrication environment, Pa-
perPulse, that empowers users without a technical background to make new
interactive paper interfaces using these technologies (G1).

PaperPulse is an integrated software environment that seamlessly guides
users and automates several aspects of the visual design, electronic designs,
and programming of physical paper interfaces (C5):

• Paper constructions, such as origami structures, are often unstable and
fragile. To design high-�delity interactive paper artifacts, PaperPulse de-
vises a special layering technique and a toolkit of custom designed widgets
(Section 3.4) to ensure every design is �at and rigid. These multi-layered

34 PaperPulse: Designing and Fabricating Physical Interfaces

Figure 3.1: An interactive paper game designed with PaperPulse

paper artifacts are traditionally hard to design, since they require cutting
and gluing di�erent parts. Various aspects of a multi-layered paper de-
sign need to be consistent, such as the position of folding lines, slots, and
tabs [Carter 99, Annett 15]. Additionally, brittle electronic circuit traces
cannot intersect cuts or folds and it is non-trivial how to power moving
parts without hard-wiring them. PaperPulse automatically handles these
complex design issues when making physical paper interfaces (C2).

• To make electronics available for non-experts, construction kits tar-
geting programmers, such as .NET gadgeteer [Hodges 13] or Phid-
gets [Greenberg 01], or non-programmers, such as littleBits [Bdeir 12]
provide modules to rapidly build hardware prototypes. However, these
kits are often bulky and have limited prede�ned behaviors. Thus, for
instance, it is not feasible to create interactive physical paper interfaces
that embed electronics in their paper designs, such as interactive greet-
ing cards that can be handed out, or paper games as shown in Figure
3.1. PaperPulse seamlessly embeds electronics in visual designs and uses
algorithms to generate a detailed electronic circuit based solely on the
speci�ed behavior of the system (C3).

• To enable non-programmers to specify the behavior of interactive paper
interfaces, we present a visual programming paradigm, called Pulsation.

3.2 Brief System Overview 35

With Pulsation, behavior is speci�ed by visually creating functional links
between electronic components. To verify these functional relationships,
Pulsation supports a simulator to test the behavior of designs in software
before fabricating the paper interface. In this chapter, we demonstrate
the di�erent constructs in Pulsation and show how they integrate within
the PaperPulse design environment. Based on the lessons learned in this
Chapter, we will continue exploring visual speci�cation paradigms for
physical interfaces in Chapter 5.

In the following, we �rst give an overview of the system. Next, a walk-
through of the system shows step-by-step how to design a paper game. We
then present and discuss the PaperPulse widget toolkit as well as the Pulsation
visual programming paradigm. Afterwards, details on the architecture and im-
plementation of the system are provided. Various paper artifacts designed with
PaperPulse to show the validity of our approach and report on design sessions
with users to demonstrates the utility and usability of PaperPulse. We end
with a discussion and summary of the presented work.

3.2 Brief System Overview

PaperPulse is an integrated design and fabrication environment that allows
users without a technical background to create physical interfaces by aug-
menting �exible substrates, such as paper or transparent plastic sheets, with
electronics. PaperPulse guides the user through the design, electronics, and
programming aspects of making interactive paper interfaces.

Figure 3.2 shows how PaperPulse streamlines the design and fabrication
process of interactive paper artifacts:

a. The user adds interactive elements (e.g. push buttons, sliders, LEDs,
microphones) to the visual design and speci�es the logic between com-
ponents using Pulsation.

b. PaperPulse generates di�erent layers of visual elements and electronic
circuit traces optimized for printing with an inkjet printer �lled with
conductive ink [Kawahara 13].

c. By following a custom-generated tutorial, the user attaches PaperPulse
electronic stickers and assembles the di�erent parts.

d. Next, PaperPulse generates code that is directly uploaded to the micro-
controller attached to the paper.

e. The design can now be used as a standalone interactive paper interface.

36 PaperPulse: Designing and Fabricating Physical Interfaces

Figure 3.2: The PaperPulse work�ow streamlines the entire process of creating
interactive paper artifacts. (a) Design and specify logic; (b) print sheets; (c) assemble;
(d) upload generated program to microcontroller; (e) �nal paper artifact.

3.2 Brief System Overview 37

Figure 3.3: Some of the PaperPulse electronics stickers: (a) LEDs, (b) resistors, (c)
bridges, (d) seven-segment displays, (e) buzzers

Although electronic circuits traces generated with PaperPulse can be fab-
ricated using various techniques (e.g. a conductive pen, vinyl cutter), the cir-
cuits traces are optimized for printing on resin coated substrates (e.g. paper or
plastic) using a conductive inkjet printer [Kawahara 13]. Besides these circuit
traces, PaperPulse includes a physical toolkit of electronic stickers (Figure 3.3),
to �nalize the design. These stickers have a conductive and adhesive back and
are easy to attach �rmly to printed circuit traces. Di�erent variations of these
stickers exist to support a wide variety of components including, circuit bridges,
resistors, buttons, switches, LEDs, seven-segment displays, buzzers. In con-
trast to traditional multi-layered PCBs, our resin coated substrates only have a
single layer. When the circuit requires multiple layers, electronic circuit bridge
stickers are used to bridge circuit traces and realize complex non-planar circuit
graphs (Figure 3.2c).

Our design tool allows users to focus on the graphical design thus users
only interact with a single canvas. However, every design has a uni�ed layer-
ing approach consisting of 3 layers: a base layer, a top layer, and an optional
widget-speci�c layer (Figure 3.4). The base layer includes the main electronic
circuit while the top layer mainly consists of graphical visual elements. De-

38 PaperPulse: Designing and Fabricating Physical Interfaces

pending on the type of widgets (section 3.4) used in the design, a third, widget-
speci�c layer is required. As shown in Figure 3.4a-b-c, every widget used in
the design, contributes elements to multiple layers. These elements consist
of circuit traces, visual elements, and assembly instructions, such as dotting
lines for cutting, dashed lines for folding, and hashed regions for gluing (Fig-
ure 3.4). Some sheets (i.e. the top layer) also have information present on the
back of the paper while others require conductive as well as non-conductive
information on the same page. The custom generated tutorial guides users to
correctly align paper in the conductive inkjet printer, or a regular color printer
for non-conductive elements. This layering approach is also vital for the seam-
less integration of electronics and visual elements, since all conductive traces
are concealed.

PaperPulse supports both Netduino1 and Threadneedle2 development boards.
Pins on the Netduino connect to paper circuits using bulldog clips. In con-
trast, Threadneedle exposes �at connection pins that seamlessly attach to the
printed circuit using Electrically Conductive Adhesive Transfer (ECATT) tape
(Figure 3.2d).

3.3 Walkthrough: The Hungry Monkey Game

The following walkthrough illustrates the process of designing and fabricating
a paper game with PaperPulse (Figure 3.2). The game consists of a loop of
six LEDs that consecutively turn on and o�. The objective of the game is to
�grab the banana" by pressing a button at the moment when a particular LED
lights up. A buzzer rings for a short duration each time the player succeeds in
doing so.

Step 1: Designing the Interactive Paper Layout

The user starts by specifying the dimensions of the paper design. PaperPulse
then allows to import pre-designed visual elements (i.e. images) and to arrange
them onto the canvas (Figure 3.2a). Next, the user overlays the design with
interactive components (six LEDs, a buzzer, a pull switch, and a button), avail-
able in the widget toolbox (Figure 3.2a). To give users a better idea of the look
and feel of di�erent components, tooltips with video previews [Grossman 10]
are available in the widget toolbox.

1www.netduino.com
2modlab.co.uk

3.3 Walkthrough: The Hungry Monkey Game 39

Figure 3.4: Widgets in a design e.g. (a) pullchain switch, (b) paper-membrane push
button, (c) electronic circuit LED sticker, contribute content to multiple layers of a
PaperPulse design

40 PaperPulse: Designing and Fabricating Physical Interfaces

Step 2: De�ning and Verifying Logic Iteratively

Figure 3.5 illustrates how the user links the switch to the loop of LEDs, to
start the game:

a. The user starts a new input recording in the if -part of the logic recorder.
b. She demonstrates the switch changing to the `on' state using the widgets

on the canvas.
c. The user then starts a new output recording in the then-part of the logic

recorder.
d. She demonstrates the blinking pattern of the LEDs by turning their

brightness consecutively to 100% and back to 0%.
e. Next, the user speci�es the timing for these recorded actions by setting

them to occur at intervals of 0.3 seconds. She also speci�es the looping
behavior by setting the loop option to In�nite.

f. When the if�then rule is con�rmed, PaperPulse automatically infers the
behavior for the `o�' state of the switch.

To verify the recorded rule, the user starts the simulator to interact with
the widgets and observes the corresponding output (Figure 3.7). By observ-
ing ful�lled conditions and executed actions in the Debug View, the user can
identify possible mistakes in the recorded rules.

Next, the user records the logic for the �grab now� button. If pressed at
the moment the LED under the monkey (�LED 4�) lights up, the buzzer should
ring to indicate that the game is completed. Figure 3.6 illustrates the recording
of this behavior:

a. She records the if -part of the logic by demonstrating the button press
and turning the brightness of LED 4 to 100%.

b. The recording is �ne-tuned by specifying that the two conditions need
to be satis�ed simultaneously.

c. The user records the then-part of the logic by turning the volume of the
buzzer to the desired intensity.

d. Next, she speci�es the timing of the output action (buzzer ringing) to
ensure that the buzzer stops after two seconds.

Step 3: Printing and Assembly

Once the design is complete, the user speci�es the position of the microcon-
troller and veri�es that electronic connection pins for the widgets do not over-
lap. The user can adjust widget properties like position, size, and orientation
accordingly.

3.3 Walkthrough: The Hungry Monkey Game 41

Figure 3.5: Recording an if�then rule for the LED sequence when a switch is turned
on.

42 PaperPulse: Designing and Fabricating Physical Interfaces

Brightness LED 4 equals: 100

Button 1 Press

Volume Buzzer 1 to: 100 after s

s

0

2afterVolume Buzzer 1 to: 0

Simultaneous Exactly Matches

If ThenEvent Sequence 3 Event Sequence 4Execute
Auto Undo
Confirm

Loops: 1Disable Abs Timing

Auto
Undoquence 2

grab thgo If LED 4 is ON and
Button press occurs

Simultaneous

a
Buzzer rings

c Timing
d

b

Figure 3.6: Recording another rule to ring a buzzer if the button is pressed at the
moment �LED 4� turns on.

The printing process starts by generating:

1. An electronic circuit that connects widgets to pins on the microcontroller
while limiting the number of intersecting circuit traces.

2. PDF �les consisting of the electronic circuits, widget-speci�c assembly
lines (e.g. cut lines, fold lines), and visual elements.

3. Microcontroller code.
4. A customized tutorial to guide the user through the printing, deployment,

and assembly.

Following the tutorial (Figure 3.8a), the user is instructed to print the
generated PDF �les on three sheets of paper, using a conductive inkjet and
a color printer, as required (Figure 3.8b). She then attaches electronic bridge
stickers (Figure 3.2c) at intersecting traces that could not be resolved by the
auto-routing algorithm. The remainder of the tutorial provides instructions
to cut, fold and glue layers of paper, attach electronic components, such as
LEDs, resistors, and attach the microcontroller and upload the generated code
(Figure 3.8c-d).

As shown in Figure 3.2e, the resulting end-product can now be used as a
standalone paper game after connecting a battery.

3.4 PaperPulse Widget Toolkit

Designing reusable widgets that can be printed or connected reliably to cir-
cuit traces is non-trivial. Challenges include, realizing high-quality electronic

3.4 PaperPulse Widget Toolkit 43

Figure 3.7: The PaperPulse Simulator enables testing of recorded rules.

connections between contact pads on �exible substrates, ensuring continuity
of brittle circuit traces over folding structures, powering of moving parts, in-
creasing the �rmness and durability of widgets and the entire interactive paper
interface. To provide users with appropriate widgets, suitable for their interac-
tive paper interfaces, we present three families of standard widgets: electronic
circuit sticker widgets, paper-membrane widgets, and pull-chain widgets. Ev-
ery widget family realizes basic controls such as push buttons, switches, sliders,
and radio buttons. Each family is unique in its own way, and provides some
strengths to distinguish itself from the others. Figure 3.9 illustrates how each
approach realizes a linear slider.

The three widget families consist of a di�erent number of layers. Our uni-
form three-layering approach (Figure 3.4) allows widgets of all three families to
co-exist in a single design. Every widget design ensures that all conductive lines
are traced back to the base layer, which is connected to the microcontroller.

44 PaperPulse: Designing and Fabricating Physical Interfaces

a b

c d e
Figure 3.8: Printing and assembling process: (a) instructions generated; (b) sheets
printed (c) circuit and widgets assembled; (d) generated code uploaded to the micro-
controller; (e) the �nal paper artifact.

a

b

c

Figure 3.9: The three families of PaperPulse widgets: (a) Electronic circuit sticker
slider; (b) Paper-membrane slider; (c) Pull-chain slider.

3.4 PaperPulse Widget Toolkit 45

Figure 3.10: The electronic circuit sticker widgets currently supported by Paper-
Pulse.

3.4.1 Electronic Sticker Widgets

PaperPulse currently supports eight circuit sticker input sensors and four out-
put components (Figure 3.10). Some components expose �at connection pins
on the bottom (SMDs3) while others have regular pins (through-hole com-
ponents). The connection terminals of both mounting technologies are too
small to be connected reliably onto substrates using ECATT-tape or conductive
paint4. Therefore, these components are �rst connected to a custom-fabricated
�exible PCB substrate that exposes larger contact pads on the bottom of the
PCBs (Figure 3.3). We refer to these type of widgets as electronic circuit stick-
ers since they expose a conductive and adhesive back (using ECATT-tape) and
are therefore easy to attach �rmly to printed circuit traces. Many electronic
circuit stickers also integrate multiple electronic components that are always
used in combination. Examples include, resistors for LEDs or shift registers
for seven-segment displays. Hence electronic circuit stickers also reduce the
number of components users have to attach manually.

Although electronic circuit sticker widgets require only little manual as-
sembly, they have a �xed design and often protrude from the surface. When
augmenting paper designs with electronics, it is often desirable to resize com-
ponents and integrate them seamlessly with visual elements on paper. This is
accomplished with paper-membrane and pull-chain widgets.

3Surface Mounted Devices
4www.bareconductive.com

46 PaperPulse: Designing and Fabricating Physical Interfaces

3.4.2 Paper-Membrane Widgets

Figure 3.11 shows two paper-membrane widgets. The main design rationale
behind paper-membrane widgets is to create an electronic circuit between the
base layer and back of the top layer and separate them with thin air gap using
a paper frame (widget-speci�c layer) that serves as a spacer (Figure 3.11a).
Pressing on the top layer connects it to the bottom, closing the circuit and
thus realizing a push button. The top layer is powered from the base layer by
connecting regions Z1 and Z2 using ECATT-tape.

Figure 3.11: Design of paper-membrane widgets: (a) push button (b) slider.

Figure 3.11b shows the design of a paper-membrane slider in which the
principle of a voltage divider is applied to measure the position where the top
(wiper) and base layer make contact. A resistor of 2MΩ in the design serves as
a pull-up resistor to detect when the slider is not touched. To increase sensor
resolution, the resistive strip should have a large resistance range. Although
resistive strips can be printed (by reducing the opacity, and hence quantity of
conductive ink) or drawn using graphite [Holman 11], we noticed that due to
wear-and-tear the resistance of these strips often changes at frequently touched
spots. For paper-membrane sliders, we therefore use resistive 8 mm VHS tape5

as sensor strip, resulting in a more durable paper-membrane slider.

5Several other kinds of tapes could also exhibit linear resistance.

3.4 PaperPulse Widget Toolkit 47

Paper-membrane widgets support radio buttons and switches by incor-
porating multiple paper-membrane push buttons in a single widget with a
shared software state. In contrast to electronic circuit sticker widgets, paper-
membrane widgets are customizable. On the other hand, they do not o�er
tangibility. This is the essence of pull-chain widgets.

3.4.3 Pull-Chain Widgets

Pull-chain widgets draw inspiration from planar paper pop-up mecha-
nisms [Carter 99]. Similar to electronic circuit sticker widgets, pull-chain wid-
gets provide tangibility but at the same time do not protrude from the surface.
Since they are designed entirely out of paper, pull-chain widgets are customiz-
able and blend seamlessly into paper designs.

Although pull-strip mechanisms are traditionally used as sliding mecha-
nisms [Qi 10], we see them as omnivalent pulling mechanisms in the same way
as old-fashioned pull chains were used to control electrical appliances, such as
light bulbs and fans. Figure 3.12 shows a pull-chain switch, slider, radio button
and push button (using a crossing interaction technique [Apitz 04]).

a b c d
Figure 3.12: Pull-chain widgets supported by PaperPulse: (a) Push-button, (b)
Switch, (c) Radio button, (d) Slider.

48 PaperPulse: Designing and Fabricating Physical Interfaces

The mechanisms used for pull-chain widgets are optimized for tracking
with electronic circuits printed on paper. These conductive traces are often
brittle and cannot span across folded structures. As shown in Figure 3.13, the
mechanical design of every pull-chain widget consist of the following parts:

a. A folded tube structure with a hollow center to ensure strength and
rigidity during pulling and pushing motions.

b. Paper slots to guide the pull-strip.
c. A wing tab to lock the pull-strip in place.
d. A pull-tab that functions as handle.

Since the tube-structure of the pull-strip is interwoven in the top layer,
this provides su�cient pressure between the pull-strip and the base layer to
ensure electrical connectivity. At the same time this construction provides an
acceptable amount of friction to manipulate pull-chain widgets comfortably.

Base Layer

Widget-Specific Layer

Top Layer

3

1

2

Resistive StripResistive Strip

Protruding FlapsProtruding Flaps

Wing TabWing Tab

GuidesGuides

Folded
Tube Structure

Folded
Tube Structure

GroundGroundAnalogAnalog
(Wiper)(Wiper)

VccVcc Pull TabPull Tab

c

b

a

d

Figure 3.13: Design of pull-chain widgets: The widget-speci�c layer is interwoven
into the top layer by passing it through four slots. Protruding �aps on the base layer
also pass through these slots to ensure constant contact between the winding circuit
traces on the pull-chain and the three pin connections on the base layer.

Figure 3.13 also shows the electrical circuit design speci�cally for pull-chain
sliders. This consists of an analog sensor strip (8 mm VHS resistive tape) and

3.5 Pulsation: Specifying Functional Relationships between
Electronic Components 49

winded circuit traces on the back of the pull-strip. Pull-chain radio buttons
use the same approach but software thresholds are used to realize discrete
states. In contrast, pull-chain push buttons and switches consist of conductive
patches at speci�c spots that make an electronic connection when the strips are
pushed or pulled. Push buttons, switches and radio-buttons usually employ
mechanical detent mechanisms. These techniques however do not transfer to
paper since paper is too fragile. To avoid undesired oscillations when widgets
are in between states, hysteresis and timeouts are used in software.

3.4.4 Summary of PaperPulse Widgets

In order to provide users a wide variety of widgets in PaperPulse, we presented
three families of standard widgets. As shown in Table 3.1 each design o�ers
its own strengths and limitations.

Circuit Sticker
widgets

Paper-Membrane
Widgets

Pull-Chain
Widgets

Interaction Style Tangible Touch Tangible

Minimal Assembly
√

� �

Seamless Integration

(Non-Protruding)
�

√ √

Customizable �
√ √

Table 3.1: Strengths and limitations of PaperPulse widget families from a user
perspective.

3.5 Pulsation: Specifying Functional Relationships

between Electronic Components

Pulsation allows users to graphically specify logic by demonstrating and record-
ing actions directly in the context of the visual design elements. Demonstrating
actions using a graphical user interface, however, is limited to actions that can
be de�ned through the graphical interface of the tool. For example, demon-
strating multiple actions that need to occur simultaneously is impractical using
a regular mouse and keyboard. Similarly, specifying a set of actions that can
be performed in any order, requires demonstrating all di�erent possible or-
derings one by one. To address these challenges, and provide a higher ceiling
than is possible with demonstration alone, Pulsation augments widgets and the
demonstrated actions with dialogs that allow �ne-tuning of speci�c properties
(Figure 3.5). At the same time, demonstrating actions in the context of visual
design elements calibrates the state of the input widget to real world values

50 PaperPulse: Designing and Fabricating Physical Interfaces

that are present in the visual design. This makes it possible, for example, to
gauge a slider by demonstration, or choose which state of a switch is high or
low.

Pulsation consists of a grammar and interpreter. The interpreter can be
deployed on desktop computers as well as microcontrollers supporting the .NET
Micro Framework. The Pulsation grammar consists of if�then as well as map�
to rules, as shown in Figure 3.2a. For if�then rules, a set of recorded actions
(output set, or the then-part) is executed when a set of recorded conditions
(input set, or the if -part) has been met. For map�to rules, parameters of input
set (e.g. the number of ful�lled actions in the set) are continuously mapped
to parameters of the output set (e.g. speed with which the set of actions are
executed repeatedly). Both if�then and map�to rules thus relate an input set
to an output set.

3.5.1 Input Sets

Input sets specify conditions (guards) to be ful�lled. Input sets therefore con-
sist of one or more conditions related to input or output widgets. Three types
of conditions are supported by Pulsation: (1) Momentary input conditions, are
true for only a very brief amount of time, such as a pressing or releasing a push
button. (2) Discrete state conditions are true until the widget switches to an-
other state e.g. the modes of a switch, a discrete brightness value of an LED
or the pressed state of a push button. (3) Continuous range conditions are
true when the current value of a continuous input widget is within a speci�ed
range, such as a speci�c range of a slider or the volume range of a buzzer.

As shown in the walkthrough, Figure 3.6a gives an example of an input
set that is ful�lled when a push button is pressed at the same time that an
LED lights up. Essential here are the timing options o�ered by input sets
(Figure 3.6b). These options allows one to specify conditions that need to be
met simultaneously, sequentially or in a random order. When timing options
are di�erent for some conditions in the set, these conditions are grouped in
separate layers.

Using the conditions and timing options provided by input sets, simple
patterns of conditions can be recorded that need to match with the incoming
stream of events. Pulsation supports two matching approaches: (1) The include
matching approach requires the stream of all incoming events to ful�ll the
pattern of conditions speci�ed in the input set. Other events which do not ful�l
any conditions in the set are also allowed. (2) The exact matching approach,
does not allow events that do not ful�ll any of the conditions in the input

3.5 Pulsation: Specifying Functional Relationships between
Electronic Components 51

Brightness LED 1 to: 100 Set Segment Display 1 to 2

Set Segment Display 1 to 6

Event Sequence 1 Progress Progress ExecuteEvent Sequence 2 Event Sequence 3Event Sequence 1

Brightness LED 2 to: 100

Brightness LED 3 to: 100

Brightness LED 4 to: 100

1 1Enable Abs Timing Loops

Button 1 Press

Button 9 Press

Button 8 Press

Button 9 Press

If ThenMap To

Enable Abs Timing Loops

Sequential Exactly MatchesSequential Exactly Matches

Button 1 Press

Button 9 Press

Button 8 Press

Button 9 Press

after

after

s

s

Buttons 1, 9, 8, 9 Pressed LEDs turn on

Check if correct
year entered

Seven-Segment
flashes “2”, “6”

a dcb

2.0

1.0

Figure 3.14: An invitation card with a code slot designed using PaperPulse: (a)
Every time the user enters a correct number of the year of birth of the sender, (b)
one more LED lights up. (c) When all four numbers are pressed in the right order,
(d) the date of the birthday party appears.

set. Figure 3.14a shows an input set that uses the exact matching approach
in combination with the sequential timing option to enforce end-users to press
speci�c buttons in a certain order without pressing other buttons in the mean
time, thus realizing a digits code slot.

3.5.2 Output Sets

Output sets consist of one or more output actions. Pulsation supports two
types of output actions: (1) Discrete output actions, such as lighting up an
LED, setting the digit of a seven-segment display or a monotonic tone of a
speaker. (2) Range output actions specify an output range that has be tran-
sitioned. An optional time parameter can be speci�ed by the user. Examples
include, fading an LED in or out or realizing a count-down or count-up with a
seven-segment display.

As already shown in Figure 3.5e, output sets allow to specify delays be-
tween recorded actions. Besides this, the loop construct o�ers the possibility
to execute the set of actions multiple times.

3.5.3 If�then Rules

One way to relate input to output sets with Pulsation is using if�then rules.
These rules allow to execute or stop/reset an output set when all conditions
of an input set are met. An existing output set can also serve as input set for
another if�then rule, thus allowing for nested rules. Or-relations are indirectly
supported using multiple if�then rules.

Figure 3.14c-d, shows the if�then rule needed for realizing a code slot.
When the correct code is entered, in this case the year of birth of the sender

52 PaperPulse: Designing and Fabricating Physical Interfaces

of the invitation card, the date of the birthday party is revealed on a seven-
segment display.

When input sets solely consist of stateful conditions, i.e. Discrete state
conditions and continuous range actions, it is often desirable to undo all actions
performed in the output set once the conditions in the input set are not ful�lled.
Specifying all these �undo� if�then rules manually can become cumbersome,
especially when widgets have many modes (e.g. radio buttons). For example,
turning the switch, discussed in the walkthrough (Figure 3.5), to the on-state
starts the game, and thus the blinking of the LEDs. Turning it to the o�-state
should turn o� the LEDs. Pulsation automatically infers for every if�then rule
whether this undo is appropriate and will suggest to automatically undo all
state changes, caused by this rule, when the input set is not ful�lled anymore.
Pulsation considers the undo operation to be appropriate when the input set
only consists of stateful conditions.

3.5.4 Map�to Rules

Map�to rules allow for linear mapping of a derived parameter of the input set
to another parameter of the output set. For example, mapping the volume of
a microphone or speed with which a push button is tapped to the number of
LEDs that light up or the frequency with which they blink.

Pulsation supports numerous derived parameters for both input as well as
output sets. The mapping parameter can be di�erent for the input and output
set, so many combinations are possible.

• Value (only for input sets that consist of a single continuous range con-
dition and output sets that consist of only range output actions): The
current value in the range is used as mapping parameter.

• Progress (only for input/output sets that consist of at least two actions):
As mapping parameter for input sets, the number of ful�lled actions is
used. As mapping parameter for output sets, a corresponding number of
actions of the set is executed sequentially.

• Repetition (only for input sets): The number of times the conditions in
the input set are ful�lled is used as mapping parameter.

• Time (only for input sets): The duration that all actions in the input set
remain ful�lled is used as mapping parameter.

• Speed : As mapping parameter for input sets, the speed with which the
input set is repeated is used. As mapping parameter for output sets, the
actions in the set are repeatedly executed at a certain speed.

3.6 Architecture and Implementation 53

Figure 3.14a-b shows how a map�to rule is used to visualize the end-users'
progress while entering the code on the birthday invitation card. Here the
progress through the input set (pressing buttons sequentially), is mapped to
the progress of di�erent LEDs that light up.

3.6 Architecture and Implementation

PaperPulse is implemented in .NET/C#. This section describes the architec-
ture and algorithms underlying the PaperPulse system.

3.6.1 Generating Electronic Circuits

PaperPulse employs an auto-routing algorithm to generate conductive traces
that connect the pins exposed by widgets to the pins of a microcontroller. We
implemented a variation of the A* algorithm in which traces can make junctions
with other traces that connect to the same pin. Our routing algorithm traces
straight horizontal and vertical paths with a thickness of 0.6mm. To guarantee
a minimum spacing of 1.5mm between all circuit traces, the routing algorithm
uses a grid with cell sizes of 2.1mm (thickness of conductive paths + spacing).
The �nal circuit traces are centered in these cells. Figure 3.15a shows the
�nal circuit design of the diet card example design (Section 3.7). Figure 3.15b
shows how this circuit is represented in the circuit routing canvas. The canvas
consists of 96x81 cells/pixels as the design measures 170x200cm. Note that the
circuit tracing canvas in Figure 3.15b is enlarged for visualization purposes.

To realize a working electronic circuit, the algorithm routes circuit traces
one by one and updates the cost of all cells every iteration. Cells with conduc-
tive traces or instructions have a high cost and are therefore avoided. When
the circuit is non-planar however, the algorithm interrupts one of the inter-
secting traces and leaves place for an electronic circuit bridge sticker. As the
contact pads of bridge sticker components take up space, only circuit trace seg-
ments that are surrounded with enough empty space are eligible for bridging.
Figure 3.16 shows two invalid locations: (a) bridges close to corners and (b)
bridges covering multiple circuit traces. To ensure bridges are only placed at
valid locations, we devised an algorithm that extracts invalid bridge locations.
Figure 3.15c shows all invalid bridge locations in �nal circuit design of the diet
card example design.

When routing circuit traces, our algorithm inspects which positions on the
existing circuit traces are valid bridge locations, by inspecting the surrounding
area. In this process, the algorithm uses a series of morphological operations.

54 PaperPulse: Designing and Fabricating Physical Interfaces

Figure 3.15: Detecting invalid bridge locations: (a) Automatically generated circuit
diagram for the diet card example. (b) Representation of the circuit in the circuit
routing canvas. (c) All invalid bridge locations at circuit traces (white).

Figure 3.16: Invalid placement of bridge sticker components: (a) close to corners,
(b) bridges covering multiple circuit traces.

3.6 Architecture and Implementation 55

Figure 3.17 illustrates this algorithm with a simple example in which one pin
of a button has to be connected to one of the pins at the edges of the substrate,
in the presence of other traces. The algorithm �rst creates a binary image with
all conductive regions (b) and a �ltered representation that includes only the
routed traces (c). The former image represents all conductive regions that are
potentially in con�icting neighborhoods of a bridge. The latter one highlights
all potential bridge locations. As bridge stickers can bridge both horizontal
and vertical circuit traces, we consider these cases separately. From represen-
tation (c), two images are extracted that contain respectively all vertical and
horizontal traces using an erosion morphological operation (e). The length of
the structured elements used in these operations matches the length of a bridge
sticker component. To verify which locations on the canvas have enough space
for a bridge to be placed vertically or horizontally, two dilation morphological
operations with the respective structured elements shown in (d) are applied
on representation (b). The size of these structured elements match the size
of a bridge sticker component. The dark pixels in the �nal two representa-
tions of (d), that correspond with pixels of circuit traces in (e), represent valid
bridge locations. To extract these valid bridge locations, we �rst extract in-
valid bridge positions in the horizontal and vertical direction by masking the
vertical and horizontal representations in (d) with the respective vertical and
horizontal line detection masks in (e). This results in respectively (f) and (g)
of which the white pixels represent invalid bridge locations. Inverting both
representations and applying circuit trace mask (c), results in all valid bridge
locations in respectively the vertical (h) and horizontal direction (i). (j) Shows
the combined result for both directions. Inverting this representation and ap-
plying again circuit trace mask (c), results in all invalid bridge locations at
circuit traces.

The highlighted pixels in Figure 3.17k are used as invalid locations in the
next iteration of the circuit routing algorithm that connects the last pin of the
circuit. Figure 3.18 shows the result after the last circuit tracing iteration, the
A* algorithm bridged one of the circuit traces at a valid location and connects
the button to pin 4.

In Figure 3.17a, the top two horizontal circuit traces, linking to 5V and
ground, are positioned close to each other. As it is not possible to cross mul-
tiple circuit traces with bridge sticker components, both circuit segments are
correctly marked as invalid bridge locations in Figure 3.17k. Circuit traces
that are positioned close together oftentimes make it extremely challenging for
the circuit routing algorithm to connect all electronic components. For exam-
ple, when the �rst to routed traces are positioned near each other and span

56 PaperPulse: Designing and Fabricating Physical Interfaces

Figure 3.17: Morphological operations used to identify valid bridge locations.

3.6 Architecture and Implementation 57

Figure 3.18: Electronic circuit after the last iteration of the A* algorithm.

58 PaperPulse: Designing and Fabricating Physical Interfaces

Figure 3.19: The circuit routing algorithm favors additional space between circuit
traces.

the entire length or width of the substrate, it is not possible anymore to reach
the other side of the substrate. Especially when the complexity of electronic
circuit increases (e.g. Figure 3.15), this problem emerges. Therefore our algo-
rithm adds additional weights to the surrounding cells of valid bridge locations
to force the circuit routing algorithm to �rst consider cells that are located
further from the traces already routed. Figure 3.19a shows the result of this
additional step. Compared to the previous result shown in Figure 3.18, the
circuit traces at the top connecting to the 5V and ground are spaced further
apart and allow for bridges. The 3.3V pin now becomes more convenient to
reach from multiple positions on the canvas. Figure 3.19b shows the routing
grid after the �nal iteration of the circuit tracing algorithm, the lighter the
pixel the higher the cost of the cell.

Control pins of electronic components can often be connected to multiple
pins on a microcontroller. This depends on the input or output signal that is
required. For example, the anode of an LED can be connected to any PWM
pin. However, if binary output su�ces, a digital pin can be used. Our routing
algorithm takes this into account and �rst uses the speci�ed logic to assign a
set of valid control pins to every component. The algorithm then selects those
pins that maximize the number of components that can be connected given
the limited set of pins on the microcontroller. Although this technique allows
for realizing arbitrarily advanced circuit designs that utilize all resources of
the microcontroller, bridge sticker components take up space on the substrate.
This space is also used for components and circuit traces. When the routing
algorithm cannot �nd a valid solution for tracing all electronic components
to microcontroller pins, the algorithm will change the order in which pins of

3.6 Architecture and Implementation 59

electronic components are traced to the microcontroller. A similar strategy is
taken for clusters of intersecting traces. Changing the order in which traces
are routed oftentimes allows for routing more circuit traces and can lead to a
lower number of intersecting traces. When the algorithm cannot �nd a valid
solution after backtracking all possible solutions, it assumes that there is not
enough space on the substrate and leaves some of the pins disconnected.

3.6.2 Pulsation Interpreter

The Pulsation interpreter executes recorded if�then and map�to rules in our
test and debug environment as well as on microcontrollers. The implemen-
tation is consistent with .Net Micro Framework speci�cations to ensure its
portability to microcontrollers, such as Netduino and Threadneedle. As such,
the results observed in the test and debug environment of PaperPulse are al-
ways consistent with the output from the microcontroller. In contrast to the
behavior of widgets inside the design tool, their physical counterparts are sub-
ject to noise which might lead to undesired oscillations. PaperPulse mitigates
this problem by smoothing analog input signals. When analog signals are dis-
cretized (e.g. for pull-chain radio buttons), hysteresis, or double thresholding
is used.

To get the recorded logic onto these microcontrollers, we generate code
with .NET CodeDOM that re-instantiates all objects needed for the speci�ed
Pulsation logic. Once the microcontroller starts, it runs the generated code
and thus initializes all logic. Afterwards, the microcontroller runs the Pulsation
interpreter every CPU cycle. The Pulsation interpreter keeps track of timing
information and states of widgets over di�erent cycles to ensure that the output
is always correct and independent of the speed of the microcontroller. The
current version of the Pulsation interpreter requires a least 34 kilobytes of
memory.

The Pulsation implementation achieves a modular design that is reusable
and extensible by abstracting: (1) Widgets according to their input or output
type to make the system sensor-agnostic (e.g. whether an electronic circuit
sticker slider, paper-membrane slider or pull-chain slider is used, is irrelevant
for Pulsation). (2) Connection pins to support di�erent microcontroller plat-
forms, such as Netduino and Threadneedle. (3) Actions and conditions as
discussed in sections 3.5.1 and 3.5.2.

60 PaperPulse: Designing and Fabricating Physical Interfaces

3.6.3 Generating Printable Pages

For every PaperPulse design, �ve PDF �les are generated using the PDFSharp
library6: the base layer with the main electronic circuit, the conductive ele-
ments on the widget-speci�c layer, the visual information for the widget-speci�c
layer, the visual elements for the top layer, and the conductive elements on the
back of the top layer. These �ve layers are enventually printed out on 3 sheets
of paper as shown in Figure 3.4. Conductive traces are rendered using vector
graphics to preserve the quality and maximize its conductivity. When con-
tent is printed on the back of a sheet, PaperPulse automatically �ips it to
ensure correct alignment. Regions of di�erent layers that have to make con-
tact to ensure electrical connectivity are enlarged to compensate for possible
misalignments by the printer or user (e.g Z1 and Z2 in Figure 3.11).

3.7 Example Designs and Use Cases

To demonstrate the expressive power of PaperPulse, we designed several fully
functional interactive paper interfaces for various use cases. Both the visual
layout, electronics, as well as the logic is realized using PaperPulse.

Interactive Diet Card

The interactive card shown in Figure 3.20 helps tracking the number of portions
one consumes of di�erent food categories during the day. Every time a button
at the top of the design is pressed, one more LED for that food category lights
up. The reset button at the bottom ensures that the same card can be used
multiple days.

Secret Invitation Card

Since PaperPulse enables end-users to create physical paper interfaces, these
interfaces can be very personalized, such as the invitation card shown in Fig-
ure 3.21. Only if the year of birth of the sender of the card is known and
correctly entered by the receiver, will the date of the birthday party be re-
vealed. Every time a button is pressed, the progress for entering the four digit
code slot (year of birth) is re�ected by the LEDs at the top. We envision the
electronic components and conductive inkjet printing to become cheap enough
so that users can send these kind of interactive paper interfaces to people or
hand them out.

6http://pdfsharp.com

3.7 Example Designs and Use Cases 61

Figure 3.20: A diet card to track you food consumption designed with PaperPulse.

Figure 3.21: An invitation card protected with a code slot designed with Paper-
Pulse.

62 PaperPulse: Designing and Fabricating Physical Interfaces

Figure 3.22: An interactive restaurant menu to �lter through food options designed
with PaperPulse.

Interactive Restaurant Menu

Restaurant menus are sometimes very extensive, including lots of di�erent
meals, drinks, combos, special deals and an endless list of wines. Recently,
some restaurants replaced traditional paper menus by tablets. These digital
alternatives provide many new opportunities, such as �ltering through menu
options based on the price, or preferences (vegetarian, vegan, etc.). To retain
the qualities of paper menus while preserving the bene�ts of digital interfaces,
one can design interactive paper menus using PaperPulse as shown in �g-
ure 3.22. When specifying the maximum price using the slider at the bottom
of the design, the available food options are highlighted using LEDs.

Responsive Poster

Figure 3.23 shows a poster interface to attract the attention of people in, for
example, a bar. The paper design integrates a microphone which registers the
intensity of the music in the environment. The sound level is then re�ected to
the number of LEDs that light up.

3.7 Example Designs and Use Cases 63

Figure 3.23: An interactive poster to attract attention designed with PaperPulse.

64 PaperPulse: Designing and Fabricating Physical Interfaces

Figure 3.24: A children's tapping game designed with PaperPulse.

Children's Tapping Game

The tapping game shown in Figure 3.24 entertains children by re�ecting the
speed with which two buttons are pressed consecutively, in the number of LEDs
that light up.

3.8 User Study: Making Stand-Alone Interactive Pa-

per Artifacts

3.8.1 Preliminary User Evaluation

To gauge the usability and utility of PaperPulse, we conducted a preliminary
�rst-use study with four designers: a multimedia, a graphical, and two product
designers. Two participants had no prior experience in programming or elec-
tronics. The other two participants had some limited experience with Arduino
and programming. Every session lasted for 2.5�3 hours. A video introduced the
participants to the basic options of PaperPulse and Pulsation. Next, a video
tutorial for designing and fabricating the diet card, shown in Figure 3.20, was
provided. For the �rst task, participants were instructed to replicate this diet
card using PaperPulse. For the second task, participants had to design and

3.8 User Study: Making Stand-Alone Interactive Paper Artifacts65

Figure 3.25: Designs made by a participant. (a) A voting meter for neighborhoods.
(b) A tourist information map.

conceive their own ideas in PaperPulse, and reported on their experience with
the system through a questionnaire and interview.

All participants were able to design and assemble the diet card in less
than 45 minutes. Participants perceived the process of assembling the design
enjoyable and were satis�ed with the end result and reported that the outcome
met their expectations. One designer said he was �pleasantly surprised and the
whole fabrication process was like magic�.

After �nishing the diet card, all participants were enthusiastic to make
their own interactive paper interfaces. Two participants had very concrete
ideas: one designed an interactive placemat for restaurants, and the other
designed interactive city maps as shown in Figure 3.25: one to �lter through
points of interest, and another to enable voting for speci�c neighborhoods
(similar to [Vlachokyriakos 14]). The other two participants had more abstract
ideas (e.g. pressing multiple buttons to make LEDs blink, and specify beeping
patterns played by a buzzer) and explored these using PaperPulse. During
logic speci�cation, all participants used the simulator regularly, to check if
the rules they added behaved as expected. Since rules used by participants
were quite simple, errors were detected immediately. We expect users to take
advantage of the `Debug View' for more complex rules.

66 PaperPulse: Designing and Fabricating Physical Interfaces

The two participants who had experience with the Arduino platform re-
ported that they would be able to make the diet card using other tools, such
as breadboards and copper tape. However, they noted that this would require
more time and skill and the result would probably not be as visually pleasing
as with PaperPulse.

According to the questionnaire and interview, participants felt that Paper-
Pulse supports a wide variety of widgets which could even foster new design
ideas. Participants also identi�ed several areas for improvement. Firstly, one
participant suggested supporting additional widgets, such as 2D touch pads
and stepper motors. Secondly, participants preferred more visual instructions
(e.g. images or videos) during the assembly phase. During the limited ex-
posure to Pulsation, participants found map�to rules harder to understand
compared to if�then rules. From the �rst usage experience, they also found it
hard to identify in which scenarios a if�then or map�to rule would be appro-
priate. However, everyone recognized that the derived parameters supported
by map�to rules are very useful and provide a lot of �exibility.

3.8.2 PaperPulse Workshop

Following the preliminary study, we conducted two half-day workshops with 9
undergraduate students (bachelor). Although all participants had previous ex-
perience with programming, non of them programmed sensor-based systems or
worked with electronics before. Therefore, students were encouraged to make
designs that included an extended number of logic constructs, to identify the
limitations of Pulsation. In groups of 2 (one group with 3 students), partici-
pants were �rst introduced to PaperPulse using video tutorials, at the start of
the �rst afternoon. Afterwards, every group replicated either the interactive
diet card (see Section 3.7) or the Hungry Monkey game (see Section 3.3). All
four groups successfully completed the replication task within 1�2 hours.

A few days before the start of the second half-day workshop, we gave the
same groups of students the task to come up with new PaperPulse design
ideas. During the second part of the workshop, they conceived these ideas
using PaperPulse. Figure 3.26a shows the design of group A, an interactive
paper version of the rock-paper-scissors game. Group B realized a competitive
two-player version of the tapping example design discussed in Section 3.7 (see
Figure 3.26b). Group C designed an interactive card for learning mathematical
sums (see Figure 3.26c). The last group, group D, realized an interactive paper
version of the Guitar Hero game.

Groups A and B successfully �nished their design within 2�3 hours. Group

3.8 User Study: Making Stand-Alone Interactive Paper Artifacts67

Figure 3.26: Three PaperPulse designs realized during the workshop: (a) interactive
paper version of the Rock-Paper-Scissors game, (b) a two-player tapping game, (c)
an interactive card for learning mathematical sums.

68 PaperPulse: Designing and Fabricating Physical Interfaces

C and D �nished their designs but could not immediately deploy the project
because the speci�ed behavior exceeded the memory limitations of a single as-
sembly �le on the .NET Micro Framework (max 64kb). By manually splitting
the project over multiple assemblies, the project could be deployed. We no-
ticed however that these participants speci�ed more than 40 logic rules. After
analyzing both projects, we observed that the number of logic rules could be
reduced signi�cantly, when intermediate states could be stored in variables.
For example, group C used an LED to re�ect the correctness of the sum (Fig-
ure 3.26c). Here the logic speci�es the result of every possible combinations of
the three pull-chain sliders. With 45 possible combinations, this results in 45
if�then rules. Using three intermediate variables however, one for representing
the visual state of every slider, a single rule would be su�cient for checking
the mathematical validity of the sum. However, custom variables are not yet
supported in the current version of Pulsation. When the number of logic rules
increases, we also noticed that it becomes challenging for users to relate input
and output sets to electronic components on the canvas. Participants raised
this concern and suggested that visually linking conditions and actions to the
respective electronic components might help to get a better overview of the
speci�ed behavior.

A questionnaire and interview, revealed that participants enjoyed the ex-
perience and reported that they would not be able to realize similar designs,
on paper or breadboard, without PaperPulse because of their lack of electronic
and sensor-based programming knowledge.

3.9 Discussion

Our preliminary study and workshop demonstrates that PaperPulse empowers
users with no or very little technical expertise to make physical paper interfaces.
For all of our participants, PaperPulse was an enabling technology�without
this tool participants would not be able to realize a fully integrated interactive
paper design.

3.9.1 Pulsation

Pulsation supports specifying functional relationships between electronic com-
ponents without using complex programming structures, such as loops, vari-
ables, and functions. Similar to the IFTTT service7, Pulsation is developed

7https://ifttt.com

3.9 Discussion 69

around the basic concepts of �If This Then That� conditional triggers. Besides,
Pulsation augments conditions and actions with advanced timing parameters
and mapping concepts, as discussed in Section 3.5. These advanced constructs
allow users to specify complex behavior which traditionally requires using in-
termediate variables, loops, timers, mathematical calculations, etc. In many
ways, Pulsation therefore provides a lower threshold for users to specify behav-
ior between electronic components, as compared to traditional programming
languages. However, during the evaluations (Section 3.8) and design sessions
(Section 3.7), we noticed the following limitations with respect to Pulsation:

• Out of context logic speci�cations: Pulsation logic speci�cations are au-
thored using the logic recorder in the upper right corner of PaperPulse
(Figure 3.2a). Although this provide users with a visual representation of
Pulsation logic, recorded logic behavior is visualized next to the canvas.
This makes it hard to relate behavior to electronic components later. Fu-
ture versions of Pulsation could provide a better overview by visualizing
logic on top of electronic components using a graph visualization of the
behavior.

• Control over variables: Pulsation only allows for specifying conditions
related to elementary variables of electronic components, such as the
value of a slider, state of a button, or brightness of an LED. The current
implementation does not support custom variables, or access to internal
variables, managed by the Pulsation interpreter (e.g. speed with which
an input set is completed). Therefore every condition has to relate back
to one of the elementary variables in the design. Oftentimes, this signi�-
cantly increases the complexity as well as the total number of conditions.

• Limited expressive power : Although participants could all express their
design ideas using Pulsation, we noticed several options that were miss-
ing while making example designs (Section 3.7). First of all, Pulsation
strictly distinguishes if�then from map�to rules. Sometimes, conditional
map�to rules (i.e. if�then�map�to) are also desired. Additionally, the
user-evaluations revealed that participants found it hard to identify when
to use if�then or map�to rules. After several discussions with partic-
ipants to articulate the complexity they experienced, we realized that
map�to constructs are in essence advanced actions. To facilitate users
understanding and increase expressive power, future versions of Pulsation
could support only conditional statements, and o�er map�to constructs
as advanced actions. Secondly, we noticed that derived parameters (e.g.

70 PaperPulse: Designing and Fabricating Physical Interfaces

time, speed, progress, etc.), available in map�to constructs, could also
be desired for conditional statements. For example, verifying whether all
conditions of an input set remain ful�lled for a prede�ned duration of
time. Finally, the current version of Pulsation sometimes lacks precise
control over parameters. Examples include: (1) Excluding events that
cannot take place while matching input sets. Although the include and
exact matching approaches target these kind of expressions, they only
specify whether any other event, besides the event in the input set, is
allowed. As such, entering for example, two separate input sequences on
a single design in parallel (e.g. two separate code slots) is not possible.
Events required for one input sequence would cause the other input se-
quence to reset and visa versa. (2) Additional control over input sets that
have to be completed sequentially. The sequential timing parameter is
the complex as di�erent conditions have to be completed over time. For
example, it is often unclear whether conditions need to remain ful�lled
until all other conditions in the input set are completed. Additionally, in
some scenarios, it might be allowed to match conditions multiple times or
even in a di�erent order, as long as a sequence of events is registered that
also match the ordered sequence of conditions. (3) Variable parameters
instead of constants. Some of timing and derived parameters, includ-
ing, the loop and delay construct in output sets, only support constants.
Future versions of Pulsation can provide a higher ceiling by supporting
variables for these constructs.

Based on these limitations and lessons learned, Chapter 5 presents a novel
version of Pulsation.

3.9.2 Electronic Circuit Design

Although manufacturing techniques for realizing �exible PCBs with multiple
layers exist for a while, PaperPulse's circuit generation technique produces
circuits of arbitrary complexity consisting of only one layer. Bridges are placed
at crucial location to realize complex non-planar circuit graphs. In contrast to
multi-layered PCB manufacturing techniques, single-layered substrates can be
manufactured using low-cost technology, such as the o�-the-shelf conductive
inkjet printer used for our example designs. These low-cost technologies allow
for fast on-site design iterations which is essential in many design processes.
PaperPulse is the �rst tool that automatically generates circuits of arbitrary
complexity on single-layered substrates. Hence, PaperPulse also speeds up and

3.10 Summary 71

lowers the e�ort for engineers to make these kind of complex single-layered
circuits.

The electronic circuit traces generated with PaperPulse are optimized for
printing on resin coated substrates using a conductive inkjet printer. However,
designs could also be produced using other techniques, such as milling coper
traces [Savage 12], chemical etching, or silkscreen methods utilizing traditional
inkjet printers [Varun 15].

Future versions of PaperPulse can also optimize usage of electronic com-
ponents. In the current implementation, every widget needs to be exclusively
connected to one GPIO pin on the microcontroller. Supporting multiplexing
strategies or sharing pins among output widgets that are in the same state at
all times, could reduce the number of pins needed. Another interesting track
of future research is to eliminate integrating general-purpose microcontrollers,
which for many designs, is the largest non-�exible and most expensive compo-
nent. One interesting alternative technique is to build the entire circuits using
electronic primitives, such as the 7400 series integrated circuits [Barr 99]).

3.9.3 Widget Toolkit

We distilled the paper-membrane and pull-chain widget designs to their bare
minimum to ensure customizability and reusability. However, we envision
more custom designs in the future, such as sliders with non-straight tracks,
circular shapes for dial mechanisms (often called wheels or volvelles in paper
craft [Carter 99]), or origami constructions for non-�at designs [Olberding 15].
The paper-membrane and pull-chain widgets mainly focus on standard con-
trols, such as push buttons, switches, sliders and radio buttons since these
components bene�t much from customization. Although the visual design and
dimensions of paper-membrane and pull-chain widgets can be customized, their
overall shape (e.g. shape of handle) is �xed. We envision a widget editor in
the future. Future versions can also integrate paper versions of other input
components, such as bend and pressure sensors or output components, such as
speakers [Saul 10, Shorter 14] and microphones.

3.10 Summary

In this chapter we presented PaperPulse, a design and fabrication approach
that enables users to make fully-integrated physical interfaces using novel cir-
cuit fabrication techniques, such as conductive inkjet printing (G1). With
PaperPulse users are guided through the visual and electrical design aspects,

72 PaperPulse: Designing and Fabricating Physical Interfaces

as well as the programming of physical paper interfaces. Making similar physi-
cal interfaces traditionally requires knowledge in various �elds and expertise in
di�erent tools and systems (C5). To assist users in visually designing a physi-
cal paper interface, we contributed a uni�ed three layering approach and three
families of interactive widgets that integrate well in paper designs (C2). Ad-
ditionally, non-programmers specify logic in PaperPulse using the integrated
Pulsation logic speci�cation paradigm (C4). Using locations of the widgets
on the canvas and the Pulsation logic speci�cations, our system generates an
electronic circuit design that can be produced on �exible substrates using low-
cost easy-to-use machinery (C1). A custom-generated tutorial instructs users
to attach components to the circuit design (C3). The wide variety of example
designs included in this chapter, shows our approach is viable and results in
many di�erent physical user interfaces. A preliminary evaluation with laypeo-
ple shows the utility and usability of our system and work�ow. Participants
were pleased with the resulting paper artifact and the work�ow of creating in-
teractive paper interfaces themselves, something that was unavailable for them
before.

Chapter 4

RetroFab: Adapting Existing Physical Interfaces

4.1 Introduction

Graphical user interfaces of popular computing devices, such as desktops and
smartphones are easy to adapt and interconnect to accommodate for changing
user needs. In contrast, devices and appliances such as ovens, thermostats and
toasters, are traditionally designed to be static and non-adaptive. The tangi-
bility and rigidity of these legacy devices make it hard for an end user to change
the user interface, as one may do with software applications through plug-ins,
reverse engineering [Chikofsky 90], or runtime toolkit overloading [Greenberg 01].
For instance, it is not feasible to resolve design mistakes or adapt an interface
to users' evolving or custom needs (e.g., impaired users).

To make changes to legacy infrastructures and allow for interconnectivity,
one can retro�t the physical user interfaces, for example, to augment light
switches1 and dials2. When retro�tting, a redesigned physical component is
placed over top of the original component, thus serving as a proxy interface.
Mechanical actuators are often used to manipulate the original interface, while
sensors detect states of the device (e.g., via LED indicators). Interactions with
controls placed over top of the structure are forwarded to the original inter-
face using the sensors and actuators (Figure 4.1). This approach avoids the
complications and risks of fully disassembling and rewiring existing electronic

1www.switchmate.com
2www.locitron.com

74 RetroFab: Adapting Existing Physical Interfaces

Figure 4.1: The Switchmate retro�t kit snaps over top of traditional light switches.
User's input with the toggle buttons on top are redirected to the legacy light switches
using integrated actuators.

components, and is akin to customizing a software user interface without ac-
cessing or modifying its source code [Dixon 10].

Although these appliance speci�c retro�tting kits12 are easy to install,
the redesigned interface that is now exposed is static and cannot be recon-
�gured by novices to adapt to personal or changing user needs. Davido� et
al. [Davido� 11] experimented with customizable retro�t interfaces using the
LEGO Mindstorms toolkit. However, the mechanisms had to be manually
designed and constructed, requiring users to assemble precise structures and
brackets that �t over top of the appliances. To enable users to customize and
enhance existing physical interfaces (G2), we present RetroFab, a design tool
that automates the process of retro�tting a physical interface (Figure 4.3). Us-
ing novel Do-It-Yourself fabrication techniques, such as 3D printing (C1), the
RetroFab design environment streamlines the process of making retro�t inter-
faces by automating 3D design modeling, electro-mechanical constructions, as
well as programming aspects as follows:

• Designing 3D structures that �t over top of existing physical interfaces
requires modeling the existing structure by measuring its dimensions.
Physical interfaces, such as appliances often have shapes with complex
curvatures and cavities. Designing structure that �t precisely on over

4.1 Introduction 75

top and connects �rmly to the existing infrastructure is challenging even
for experienced 3D modeling experts. Furthermore, the retro�t structure
holds together actuators and sensors. These electrical-mechanical com-
ponents need to be positioned precisely for the retro�t interface to work.
To allow non-experts to produce retro�t designs, RetroFab automates
the entire 3D modeling process starting from an annotated 3D scan of
the existing interface (C2).

• Retro�t interfaces integrate electrical sensing components, such as light
sensors, as well as electrical-mechanical components, such as DC, servo,
and stepper motors. Controlling these components requires advanced
technical skills. Although construction kits like LEGO Mindstorms make
it easier to connect and control these components, these mechatronic
toolkits are not optimized for operating controls in physical interfaces.
RetroFab therefore comes with a mechatronic toolkit of component op-
timized for actuating common controls used in household physical in-
terfaces and appliances. Custom to the generated retro�t interface, our
software assist the user in connecting these toolkit components (C3).

• To enable non-programmers to change the behavior of existing physical
interfaces, RetroFab allows users to specify the behavior of retro�t inter-
faces. RetroFab seamlessly integrates the Pulsation visual programming
paradigm presented in Section 3.5. With Pulsation, behavior is speci�ed
by visually creating functional links between electronic components and
online services. Although, we show how Pulsation integrates in Retro-
Fab and demonstrate some example behaviors, the full set of Pulsation
features are discussed in Section 3.5.

In the following, we �rst give an overview of the system. Next, we provide
a walkthrough of the system by showing step-by-step how fabricate a retro�t
interface for a toaster. We then present and discuss RetroFab's mechatronic
widget toolkit and the di�erent retro�t models that are supported in our soft-
ware. Afterwards, we provide details on the architecture and implementation
of the system. We also present various retro�t interfaces designed with Retro-
Fab to show the validity and possible use cases of our approach and report
on a user-study which demonstrates the utility and usability of RetroFab. We
end with a discussion and summary of the presented work.

76 RetroFab: Adapting Existing Physical Interfaces

Figure 4.2: Overview of the retro�tting process. Sensors and actuators are placed
on the legacy interface, with new controls and indicators placed on a new, retro�t
interface.

4.2 Brief System Overview

The key idea behind this work is to refactor physical interfaces by mounting
a redesigned proxy interface over top of the existing form factor that is able
to intercept user input and redirect it to the original object using mechanical
actuators, while also intercepting device output and redirecting it to the user
(Figure 4.2). We de�ne the legacy interface as the target object which the user
wishes to modify. The legacy interface consists of one or more components:
legacy controls for input (e.g., buttons) and legacy indicators for output (e.g.,
LEDs).

The RetroFab design and fabrication environment facilitates and partially
automates the process of making retro�t interfaces. Hence Retrofab allows
laypeople to make retro�t interfaces as follows: From an annotated 3D scan
of an existing legacy object (Figure 4.3a-b), RetroFab automatically generates
circuitry, �rmware and a physical enclosure that precisely �ts over top of the
legacy interface (Figure 4.3c). These enclosures house mechanical actuators
and sensing components to automatically control the device and observe its
state (e.g. sensing the state of an LED). The system allows the user to to
redesign the new retro�t interface using input and output components (Fig-

4.3 Walkthrough: Refactoring a Toaster 77

ure 4.3d). A layer of actuators and sensors are used to interface between the
retro�t and legacy interfaces.

Besides redesigning the physical interface of legacy devices, RetroFab can
also change the behavior of devices. By default, retro�t components on the
front panel of the attached enclosure structure mirror all actions to RetroFab
actuators behind them: controlling a RetroFab push button or dial on the
front panel causes similar actions on the original controls using the RetroFab
actuators behind these controls. Similarly, output is redirected from the legacy
indicators to the enclosure structure using RetroFab sensors: a light sensor,
observing the state of an LED on the legacy device redirects this state to an
LED on the front panel.

The user can alter this default behavior, add extra logic, or de�ne logic
of additional RetroFab components that were added using the Pulsation logic
speci�cation paradigm (Chapter 5). In contrast to PaperPulse (Chapter 3),
where the Pulsation interpreter runs independently on every microcontroller,
here the interpreter is modi�ed to run on a central logic module (i.e. Windows
PC or microcontroller supporting .NET MF), making intercommunication an
inherent part of RetroFab.

4.3 Walkthrough: Refactoring a Toaster

The following walkthrough illustrates the process of retro�tting a legacy in-
terface using RetroFab (Figure 4.3). We use the example of a toaster, and in
later sections describe additional functionality and use cases. For the toaster,
the legacy interface is composed of the various buttons (cancel, bagel, defrost,
and reheat), a dial for temperature control, a lever to push the toast up and
down, and a set of indication LEDs.

The following example shows how RetroFab can be used to intercept all
interactions and add one extra button on the toaster as a shortcut to a preferred
setting - a defrost cycle to thaw the bread, then a mild toasting.

Step 1: 3D Scanning and Annotating Controls

The user starts by 3D scanning the toaster using the Skanect 3D scanning
software and a Microsoft Kinect. Before the scan, the buttons and LEDs are
highlighted by covering them with tape to ensure their visibility even in low
quality 3D scans by novices (Figure 4.3a). The user loads the 3D model in
the RetroFab design tool and annotates the position of the legacy controls and

78 RetroFab: Adapting Existing Physical Interfaces

Figure 4.3: Retro�tting a legacy toaster with RetroFab. (a) The toaster is scanned,
(b) the legacy interface is annotated, (c) the attached enclosure is generated, (d) the
physical interface and behavior of the retro�t interface is adapted, (e) the enclosure
is fabricated and assembled, (f) the new retro�t toaster is perfectly toasting

4.3 Walkthrough: Refactoring a Toaster 79

Figure 4.4: (a) The orange region depicts the enclosure region that RetroFab derives
based on the speci�ed components. (b) The user manually extends the region to have
additional space for the new shortcut button.

indicators using the brushes in the toolbar on the left. The system contains one
brush for every type of supported legacy control and indicator (Figure 4.3b).

Step 2: Automated Enclosure Design

Once the annotations are �nished, RetroFab positions the housings for all ac-
tuators and sensors: linear actuators for the pushbuttons and lever, stepper
motors for dials and light sensors for LEDs (Figure 4.4a). RetroFab highlights
the region that will be redesigned, and thus covered by the new physical enclo-
sure. The user extends this region to include the area where the new shortcut
button will be positioned (Figure 4.4b).

RetroFab responds by generating the 3D model of the enclosure (Fig-
ure 4.3c). Finally, the user speci�es the preferred location of the mounting
brackets (using a brush) that attaches the enclosure structure to the toaster
(Figure 4.5).

Step 3: Redesigning the Interface and Behavior

RetroFab automatically integrates a retro�t interface in the front panel of the
enclosure structure that serves as a proxy for the legacy interface. If desired,
the user can redesign this front panel by repositioning the retro�t components
or by replacing them with alternative components available in the toolbar.

80 RetroFab: Adapting Existing Physical Interfaces

Figure 4.5: The mounting brackets allow the enclosure to easily be added to or
removed from a legacy object.

Figure 4.3d shows an additional pushbutton being added to the toaster that
will serve as a shortcut to the user's favorite toast setting.

By default, retro�t controls are con�gured to mirror the actions of their
associated legacy controls. The user can alter this default behavior or add extra
logic for new components using the Pulsation visual programming paradigm
(Chapter 5). Users demonstrate actions directly on top of the 3D models of
the respective retro�t components and can also record functional relationships
between these actions. Figure 4.6 shows the user specifying the logic of the
new button on the toaster: If pressed, the lever goes down, and the defrost
button is pushed. Additionally, the user can specify that when defrosting is
�nished (sensed by the LED next to the defrost button), the toast goes back
in for a second time at a higher temperature, resulting in perfectly crisp toast!

Step 4: Fabrication and Assembly

When the design is complete, RetroFab generates: (1) STL �les to be printed
out using a 3D printer (FDM printer for our prototypes), (2) Microcontroller
code that can be directly uploaded to an Arduino platform, and (3) Assem-
bly instructions to guide users in connecting the actuators and sensors to the
microcontroller.

Figure 4.3e shows the assembled 3D printed enclosure and its embedded
actuators, sensors, and retro�t components. Finally, the enclosure structure

4.3 Walkthrough: Refactoring a Toaster 81

Figure 4.6: The user manually speci�es a logic rule using the Pulsation engine to
program the perfect toast setting.

82 RetroFab: Adapting Existing Physical Interfaces

Figure 4.7: As all of a user's retro�t objects share the same workspace, they can be
interconnected to link their functionality and enable home automation tasks.

is attached to the toaster by gluing the feet of the mounting brackets to the
appliance (Figure 4.3f). The mounting bracket is designed so that the enclosure
structure is easy to detach using screws, leaving only the feet of the mounting
brackets behind (Figure 4.3e).

Once the enclosure structure is attached, RetroFab guides the user through
a process to calibrate all the actuators and sensors, such as the range of move-
ment for an actuator to push a button or turn a dial, or the brightness regis-
tered by a light sensor to detect the state of an LED. Once the user connects
the (temporary) calibration button to the microcontroller of the retro�t inter-
face, the states of each actuator/sensor are calibrated one by one. During this
procedure, actuators/sensors are activated and the user presses the calibration
button when the actuator/sensor is in the requested state e.g. on/o� state for
light sensors observing indicator LEDs, min/max state or discrete states for
rotary dial actuators. The RetroFab UI supports removing calibration samples
and averaging multiple samples.

Step 5: Deployment

All logic de�ned using RetroFab runs on a central PC which communicates
continuously to the retro�t interface. This makes it possible to recon�gure
the behavior of devices at run time and allow for interconnectivity. Figure 4.7
shows the user linking the �snooze� button of his retro�tted alarm clock to his
personal �perfect toast� shortcut button on the toaster.

4.4 RetroFab Widget Toolkit 83

Figure 4.8: All of the functionality of a retro�t interface is also available in the
companion Android application.

When the user launches the companion RetroFab mobile application, all
retro�tted devices are automatically loaded, and display their functionalities
to allow for remote control (Figure 4.8).

4.4 RetroFab Widget Toolkit

To enable retro�tting a wide variety of devices, RetroFab comes with a set
of electrical and mechanical primitives to retro�t common physical interface
components, such as pushbuttons, rotary dials, rocker and wall switches, and
LEDs.

Figure 4.9 shows the full RetroFab toolkit, consisting of (a) actuators,
(b) sensors, (c) controls, and (d) indicators. The actuators and sensors are
positioned inside the enclosure and concealed, while the controls and indicators
are positioned on the outside of the surface, forming the retro�t interface.

For every component in the toolkit, the RetroFab design tool has a speci�c
component housing that is integrated in the enclosure structure to facilitate

84 RetroFab: Adapting Existing Physical Interfaces

Figure 4.9: The RetroFab Toolkit; Left) actuators and sensors; the white material of
the dial and linear actuator is the parametric component of the design which conforms
to the scanned control. Right) controls and indicators.

assembly and ensure precise positioning. This is particularly important for the
actuators, which operate the underlying legacy controls.

To make it possible for users without electronics knowledge to use the
RetroFab toolkit, wires have a color coding scheme and integrate the neces-
sary electronic components, such as resistors, in them. Our toolkit is easiest
to deploy using the Adafruit Motor Shield, which avoids complex H-bridge
electronic constructions. As such, components are connected directly to the
microcontroller by following instructions provided in the RetroFab design tool,
avoiding the need for complex electronic wiring designs on breadboards.

Our custom designed mechanical actuators use o�-the-shelf DC, servo, and
stepper motors, in combination with 3D printed transmission mechanisms,
to achieve the desired mechanical movement. Figure 4.10a shows how the
pushbutton actuator uses a threaded rod to convert rotational movement of
a geared DC motor to linear movement. A pressure sensor is attached to the
tip of the piston to reverse the motor when the pressure on the push button
reaches the calibrated value. In contrast, the rocker switch and wall switch
actuators use micro servos and eccentric crank mechanisms (Figure 4.10b-c).

The components that make up legacy interfaces come in di�erent shapes

4.5 Enclosure Structure Design 85

Figure 4.10: Inside view of a) push actuator, b) wall switch actuator and c) rocker
switch actuator.

and sizes and are often closely packed together on control panels. Our actuators
are therefore designed to be as small as possible while still having su�cient
force. The width of our pushbutton actuator is 12mm (Figure 4.9), making it
even possible to actuate legacy controls that have that same distance between
their center points. Additionally, actuators are represented in RetroFab by
parametric 3D models, to allow them to scale to di�erent sizes and shapes
(white material in Figure 4.9). RetroFab adjusts the size of the rack used in
the linear actuator, for example, using information of the 3D scanned model.
Similarly, the parameters of the rotary dial actuator allow it to take on the
exact inverse shape of the knob of the dial in the 3D scanned model.

A calibration procedure is devised to measure properties of controls that
are not visible in the 3D scanned model, such as the range of movement for
an actuator to push a button or turn a dial, or the brightness registered by a
light sensor to detect the state of an LED.

4.5 Enclosure Structure Design

RetroFab supports the design of two types of enclosures: attached enclosures,
which attach directly to the legacy interface and remote enclosures, which can
optionally house the retro�t interface separately from the attached enclosure.
Below the design considerations for these two types of enclosures are outlined.
Once designed, the method for specifying their behaviors are equivalent.

86 RetroFab: Adapting Existing Physical Interfaces

Figure 4.11: Exploded view of a RetroFab attached enclosure. The mounting
bracket (a) is bolted to the mounting feet, which are glued to the legacy device.
The back structure (b) holds the motors and sensors which interact with the new
retro�t interface on the the front panel (c).

4.5.1 Attached Enclosures

Attached enclosures are computationally designed with RetroFab and always
consist of three layers that are printed separately (Figure 4.11): (a) the feet of
the mounting brackets, (b) the back structure, and (c) the front panel.

The front panel of the enclosure structure consists of component housings
for attaching the retro�t controls and indicators that de�ne the new retro�t
interface that is exposed to end-users (Figure 4.11). The back structure holds
housings for components in place inside the structure to precisely position the
RetroFab actuators and sensors. Figure 4.11 shows how rigid support struc-
tures connect component housings inside the enclosure design to the outside
structure. Last, the mounting brackets �t the curvature of the legacy interface
to ensure a sturdy connection. Figure 4.12 shows how enclosure structures
designed with RetroFab �t on devices with di�erent surface curvatures.

This layered approach facilitates the assembly of retro�t components on the

4.5 Enclosure Structure Design 87

Figure 4.12: left) Mounting feet conform to the curved surface of a desk lamp, right)
the retro�t dial allows for greater positioning accuracy when tuning the frequency of
an alarm clock radio.

front panel and back structure which are later glued together. In contrast, the
back structure is mounted on top of the feet of the mounting brackets using
screws. This is enabled by the T-slot design inside the mounting brackets
(Figure 4.11). As a result, only the feet of the mounting brackets need to be
glued to the legacy device. Afterwards, the enclosure structure can be easily
removed using the screws, leaving only the feet of the mounting brackets behind
(Figure 4.3e).

While adding the mounting brackets to the design, RetroFab leaves a gap
(approximately 1 cm) between the legacy interface and the enclosure structure.
This gap makes it easier to mount the enclosure structure and allows the end-
user to observe the state of legacy components while calibrating the actuators
and sensors.

4.5.2 Remote Enclosures

RetroFab also allows users to optionally construct a remote enclosure that is
not mounted over top of the legacy interface. These types of enclosures only
consist of retro�t controls and indicators and communicate wirelessly via a
central PC to actuators and sensors that are inside one or multiple attached
enclosures. Remote enclosures can be used to design remote controls, reposition
an interface to a more convenient location, or introduce new controls to an
environment.

88 RetroFab: Adapting Existing Physical Interfaces

To design a remote enclosure, the user loads in any hollow 3D model and
adds RetroFab controls and indicators to the front panel. RetroFab responds
by integrating component housings in the 3D model that will hold the retro�t
controls and indicators in place. Once the design of the remote enclosure
structure is �nished, the user speci�es the behavior between the new retro�t
interface and the actuators and sensors in the associated attached enclosures.

4.6 Architecture and Implementation

The RetroFab design tool is implemented using .NET/C# and builds on the
Meshmixer 3D modeling program [Schmidt 10]. The companion mobile appli-
cation was developed in Java for the Android platform.

4.6.1 Computationally Generated Enclosure Designs

To attach enclosure structures, the automated design process starts with a
3D scanned model that has user annotated regions, specifying the type and
position of legacy controls. RetroFab loads and positions component hous-
ings related to the annotated controls on top of the scanned model. When
components are closely packed together, RetroFab mitigates overlaps between
these housings by optimizing their orientation. During this process, the sys-
tem rotates the intersecting housings one by one, around the normal vector
of the annotated region, until all overlaps are resolved. When no solution is
found or the process is interrupted by the user, the housings can be manually
repositioned

Once the housings of all components inside the enclosure structure are cor-
rectly positioned (Figure 4.13a), RetroFab generates the enclosure design. To
support legacy interfaces with di�erent surface curvatures (Figure 4.12), an en-
closure structure is created by extruding the surface region of the 3D scanned
model, thus preserving its curvature. The average orientation of the RetroFab
actuators and sensors de�nes the direction of extrusion. De�ning the minimal
surface region for the extrusion involves the following steps. First, the bound-
ing box of the housing for every component is projected onto the surface along
the extrusion direction (Figure 4.13b). Second, the surface curvature between
each component is sampled, resulting in another set of vertices. Together with
the vertices calculated in the �rst step, a mesh of the convex hull is calculated
using OpenSCAD . All faces inside this convex hull de�ne the minimal surface
region to be extruded to enclose the housings for all RetroFab actuators and
sensors (Figure 4.13).

4.6 Architecture and Implementation 89

Figure 4.13: Computing the minimal surface region for the extrusion of an enclosure
model. (a) The component housings, (b) the projected surface region underneath
components, (c) the �nal minimum surface region.

When components are located on di�erent sides of the legacy interface, the
minimal surface region required for the extrusion can increase substantially
(Figure 4.14a). In these situations, the user can decide to have a separate
attached enclosure structure for some components (Figure 4.14b).

Once the �nal region for extrusion is de�ned, it is smoothed and enlarged
with 3 mm to account for the thickness of the walls. This surface region is
then extracted to a new mesh which serves as the front panel of the enclo-
sure structure (thickness of the front panel; Figure 4.11). In another copy of
this mesh, only the faces on the outermost 3 mm are preserved, resulting in
a ring-like shape that will serve as the side panel of the enclosure structure
after the faces are extruded (Figure 4.11). The wall thickness (3mm) was de-
termined through iterative testing. Combined with the support structure that
hold actuators in place, these walls provide enough stability during actuation.
Thicker walls could cover undesired regions of the legacy interface or make the
enclosure heavy and prone to tipping.

To connect the component housings to the enclosure structure, RetroFab
casts rays from prede�ned support locations on the component housings to-
wards the enclosure structure. When a valid intersection is found, a cylinder
shaped support structure is created (Figure 4.11).

After the user speci�es the locations of the mounting brackets, that connect
the retro�t interface to the legacy interface, a predesigned mounting bracket

90 RetroFab: Adapting Existing Physical Interfaces

Figure 4.14: Depending on the surface region covered by the enclosure structure,
users can decide to (a) combine actuators in a single enclosure, or (b) group some of
them in a separate enclosure structure.

is put in place. To ensure that the feet of the mounting brackets matches the
surface curvatures, the Boolean di�erence is taken between the faces of the
mounting bracket and the 3D model, resulting in the removal of all faces that
are in inside the 3D model (Figure 4.15).

In contrast to the housing the components inside the enclosure structure
that require a support structure to hold them in place, housings of the com-
ponents in the front panel are supported by the front panel itself. A Boolean
di�erence operation between the front panel and all the components creates
the necessary holes in the front panel (Figure 4.11).

4.6.2 Parametric Component Designs

For components that consist of parametric parts (white material parts in Fig-
ure 4.9), additional steps are required. RetroFab uses a plane cut to trim
the track of the linear actuator to a length that is manually speci�ed by the
user (range of movement). For rotatory dial actuators, additional extrusions
and plane cuts are applied to create an adaptor that has the inverse shape
of the knob of the legacy dial. This approach can also handle dials with an
o�-centered knob successfully.

4.6 Architecture and Implementation 91

Figure 4.15: The mounting feet �t the curvature of the legacy object by using a
Boolean di�erence operation with the scanned model.

4.6.3 Communication with Microcontroller

The individual Arduino microcontrollers that control the enclosure structures
run a generic �rmware that handles the GPIO pins as well as the wireless
communication. Even for retro�tted devices that do not intercommunicate,
user input and sensor data from the retro�tted interface is �rst transmitted
from the Arduino microcontroller to the central PC. This module then decides
to turn on speci�c RetroFab actuators and sensors, controlled by the same or a
di�erent Arduino microcontroller. This approach makes it possible to change
the behavior and interconnect retro�tted devices even after the design and
fabrication is completed. Multiple independent logic modules can be deployed
to avoid single points of failure.

The automatic instantiation of the generic Arduino �rmware on the mi-
crocontrollers requires an automatic assignment of control pins. The control
pins of RetroFab components can often be connected to multiple pins on an
Arduino. If binary output su�ces, a digital pin can sometimes be used in place
of an analog pin. The system takes this into account and �rst uses the speci�ed
behavior to assign a set of valid control pins to every component. Next, the
algorithm selects those pins that maximize the number of components that can
be connected given the limited set of pins on the Arduino microcontroller.

Once pin assignments are �nished, the central PC communicates the type
of components that are used and the pins they connect to the microcontroller.
The microcontroller then responds by instantiating code for controlling these
components. Afterwards, updates on components' states are communicated to
the central PC over XBee or using a wired serial connection.

92 RetroFab: Adapting Existing Physical Interfaces

Figure 4.16: Example retro�t interfaces created using RetroFab: (a) two wall
switches, (b) a desk lamp, (c) a toaster, (d) an alarm clock with companion Android
application, (e) an oven with remote enclosure.

4.6.4 Communication with the Mobile Application

The mobile application communicates to the central PC using Wi-Fi. Once
connected, all retro�t controls and indicators present are transmitted to the
mobile device. The companion RetroFab mobile application then automati-
cally instantiates the necessary GUI elements for controlling those components
and compiles everything into a single user interface.

4.7 Example Designs and Use Cases

Using the RetroFab design tool, 5 legacy interfaces were retro�tted (Fig-
ure 4.16): (a) a wall switch, exposing a rocker switch on the retro�tted in-
terface, (b) A lamp, converting a legacy rocker switch into a push button,
(c) the toaster discussed in the walkthrough (Section 4.3), (d) an alarm clock
with buttons for setting the time (i.e., hours + minutes), setting alarms, and a
snooze button, and (e) a stove with a retro�t remote control containing 2 dials
and an indicator LED notifying the user when the heating element is warm.
Below we discuss a number of use cases that these example design illustrate.

Remote Interactions

Every retro�t interface created by the user is available through the RetroFab
mobile application. This makes it possible to control devices and appliances
remotely, such as the light switch when one forgets to turn o� the lights.
A retro�t interface can also serve as a remote for another retro�t interface.
Turning the lamp o� when going to bed, turns o� the lighting in the room as
well, using the retro�tted wall switches.

4.7 Example Designs and Use Cases 93

Locking Out Controls

Digital, as well as physical remotes, make it easy to hide potentially hazardous
controls for children. The remote control for the stove can be relocated to a
more secure area, or protected further using a key lock (Figure 4.16e). At the
same time, the attached control on the oven contains no physical interface,
making it impossible to operate without the remote control.

Resolving Design Flaws and Frustrations

RetroFab also facilitates the process of resolving poor design decisions found in
physical interfaces. Controlling the dials located on the back panel of the stove
requires moving one's arm over a number of elements, which could have pots
or frying pans on them. RetroFab allows for repositioning these controls to a
more convenient or safe location, such as the side panel of the stove. Setting
the time and alarm on an ordinary alarm clock (Figure 4.16d) is often tiring.
By retro�tting the interface using RetroFab, a shortcut can be designed for
automatically setting the current time after the lock is unplugged or a power
outage occurs. This is done by instructing the actuators to press and hold the
hour and minute buttons for a calibrated time interval, to increase the time
from the known 12:00 start position to the current time.

Shortcuts for Frequently Used or Personalized Actions

As highlighted in the walkthrough, the retro�t interface for the toaster can
integrate a personalized button for automatically toasting bread to one's fa-
vorite toast settings. Similarly, by retro�tting di�erent wall switches in the
home, one can make new buttons that serve as shortcuts for di�erent lighting
settings.

Facilitating Interactions for Users with Special Needs

People with disabilities are often unable to operate controls that are found
on most devices, as they require considerable amounts of force or fall outside
the range of motion they are capable of. The retro�tted desk lamp illustrates
how a rocker switch can be converted to a lower force control, such as a push
button. A similar push button is used in the retro�t interface of the toaster to
replace the heavy mechanical lever.

94 RetroFab: Adapting Existing Physical Interfaces

Figure 4.17: Real-time monitoring of the RetroFit interfaces.

Statistics on Appliance Usage

Since RetroFab intercepts interactions for every retro�tted control, actions
can be tracked and visualized in real time on a �ne-grained level (Figure 4.17).
Using this information, statistics over longer periods of time can be compiled
to give, for example, data on how often someone presses the snooze button on
their alarm clock.

4.8 User Study: Retro�tting a Desk Lamp

To understand the experience of working with RetroFab, an informal guided
design session was conducted with four participants. Two participants (P1, P2)
were experienced CAD users, while the other two (P3, P4) had only limited
experience with 3D modelling. P1 had extensive experience in electronic circuit
designs, whereas P2 and P3's knowledge was limited to basic prototyping with
Arduino, and P4 had no experience with electronic circuits. Each session lasted
for approximately 45 minutes.

Participants were �rst introduced to the concept of retro�tting legacy de-
vices. Then, the participants were introduced to the RetroFab design tool
using the example of the retro�tted wall switch (Figure 4.16a). Once they
understood the di�erent concepts, participants were instructed to retro�t the
desk lamp using RetroFab (Figure 4.16b). Due of time restrictions, the gener-
ated enclosure structure was 3D printed beforehand and was given to the user
during the assembly phase, after they successfully designed their own retro�t

4.9 Discussion 95

enclosure structure. Participants then assembled the 3D printed objects and
the electronic circuit by following instructions on the screen. Finally, they de-
ployed the retro�tted desk lamp and controlled it from the RetroFab mobile
application. Participants reported their experience with RetroFab through a
questionnaire.

All participants were able to retro�t the desk lamp in less than 25 minutes
and saw clear bene�ts in using RetroFab. Participants perceived the entire
process as enjoyable and were satis�ed with the end result. They reported
that the outcome met their expectations. Three participants (P1, P2, P3)
felt they could design a working prototype without using RetroFab, however,
they all agreed it would involve multiple iterations and span multiple days. All
participants appreciated the straightforward, step-by-step process of RetroFab.
They indicated RetroFab would be very useful to them for retro�tting legacy
devices in the future. P4 highlighted that RetroFab was an enabling technology
for him as he would not know how to retro�t devices without the tool.

P1, P2 and P4 mentioned they are looking forward to see how future ver-
sions of RetroFab allow for more customization of generated enclosure struc-
tures, such as embedding the enclosure structure design inside a 3D model of
choice or giving a retro�tted object a cartoon-like appearance. At the same
time, these participants noted that precise placement of RetroFab components
inherently allow for anthropomorphism, e.g. making a smiley face with Retro-
Fab components.

Participants recognized that this approach would be useful in di�erent situ-
ations, such as controlling the heating at home remotely and saving energy, or
for adapting interfaces for impaired users. They all indicated that they would
consider deploying this technology at home.

4.9 Discussion

Our preliminary study demonstrates that for users without a technical back-
ground, RetroFab is an enabling technology to make retro�t structures in order
to adapt physical user interfaces. For users with some experience in 3D model-
ing, programming, or electronics, RetroFab signi�cantly speeds up the design
process as many complex and time consuming tasks are automated. As such,
a working retro�t interface is produced in the �rst design iteration. On the
�ipside, the RetroFab environment can be extended in several ways:

First, RetroFab only generates attached enclosure structures when there is
space on the 3D scanned model for attaching the structure. For instance, very
small controls are not supported, such as lamps that have small rocker switches

96 RetroFab: Adapting Existing Physical Interfaces

integrated in the power cable. To retro�t these devices, future versions could
support wraparound enclosure structures that entirely enclose these kind of
controls.

Second, the RetroFab toolkit currently supports actuators optimized for
operating basic controls used in appliances. In the future, multiple actuators
could be developed of various shapes and sizes to reduce size and cost and pro-
vide an optimal actuator for each use case. Bigger and more powerful actuators
would, for example, allow for retro�tting heavy duty mechanical controls, such
as the linear actuator already supported, controls used in industrial machines,
and handles to adjust car seats. Another interesting direction for future re-
search is the support of more high-�delity sensors, such as microphones and
cameras, besides the light sensor that is already supported. Cameras and image
processing techniques, could allow retro�tting more complex legacy interfaces
that communicate states using displays.

Last, the current implementation of RetroFab requires actuators and sen-
sors to be positioned directly in front of legacy controls. In the future, advanced
transmission mechanisms could be supported to relocate the actuators out of
sight, behind the legacy device, in order to improve the aesthetic appearance
of enclosure structures. One could imagine using a single actuator to acti-
vate multiple controls to make the retro�t interface smaller. Besides this, the
aesthetic appearance could be improved by allowing the user to remodel the
enclosure design. For example, designing retro�t toaster with the �look and
feel� of a slot machine by merging the generated enclosure structure with a 3d
model provided by the user.

4.10 Summary

In this chapter we presented RetroFab, a design and fabrication environment
that enables laypeople to change the behavior and layout of existing physical
interfaces and appliances by retro�tting them (G2). RetroFab automates parts
of the 3D modeling, programming and circuit wiring process into a streamlined
work�ow (C5). More speci�cally, our software assist in the 3D modeling pro-
cess by computationally generating a retro�t structure from an annotated 3D
scan of the existing physical interface (C2). Besides remodeling the layout of
the interface, non-programmers change the behavior and interconnect existing
physical interfaces using the integrated Pulsation logic speci�cation paradigm
(Section 3.5) (C4). The retro�t interface can be produced with any 3D print-
ing technology, including low-cost easy-to-use FDM printers (C1). A custom-
generated tutorial assists users in assembling the retro�t interface and the com-

4.10 Summary 97

ponents of our easy-to-use mechatronic tookit (C3). The example designs in-
cluded in this chapter show that many people could bene�t from retro�tting in-
terfaces, most prominently members of the maker community, IoT-developers,
and researchers. One particularly interesting target audience for retro�t de-
vices are caregivers for disabled or elderly individuals. Retro�tting could allow
people with disabilities regain independence and operate legacy interfaces they
would otherwise be unable to. A preliminary evaluation demonstrates the util-
ity and usability of our system and work�ow for both laypeople and users with
a background in electronics or 3D modeling.

98 RetroFab: Adapting Existing Physical Interfaces

Chapter 5

Pulsation 2.0: Visual Programming for Physical

Interfaces

Expressing the behavior of physical interfaces traditionally requires non-
programmers to follow extensive tutorials, workshops, or courses to learn
the necessary programming skills [Qi 14, Mellis 13]. Researchers investi-
gated several techniques to make it convenient for non-programmers to spec-
ify logic behavior [Kelleher 05]: (1) Syntax abstraction techniques, such as
Scratch [Resnick 09] abstract syntax details using building blocks. However
even for simple programs, some exposure to di�erent programming constructs,
such as loops, variables, functions, etc. is hard to avoid. (2) Simplifying the
language to only very basic constructs, such as the IFTTT1 service. Although
suitable for simple condition-action rules, this approach is often too limited
in design environments that allow for making a wide variety of designs. (3)
Tailoring the language for a speci�c domain of programming problems. This
approach has been taken in a many of domains, including 2D (e.g. NodeBox2)
and 3D (e.g. Grasshopper Rhino3) renderings as well as audio processing (e.g.
PureData [Puckette 96]).

The Pulsation visual programming paradigm, presented in Section 3.5,
takes this last approach and is optimized for specifying functional relationships
between electronic components in sensor-based systems (C4). In many sensor-
based systems, the majority of behavior is in�uenced by some sort of temporal

1https://ifttt.com
2https://www.nodebox.net
3http://www.grasshopper3d.com

100 Pulsation 2.0: Visual Programming for Physical Interfaces

behavior. Examples include, actions triggered after a temperature change over
time, a button that has to be pressed fast or long enough, an LED or audio
signal triggered at a certain frequency, conditions that need to be completed
in a certain order or at the same time, etc. Specifying these temporal con-
ditions using traditional programming languages involves constructs, such as
variables, loops, functions, timers, etc. Learning and combining these di�erent
constructs has a steep learning curve and is often cumbersome for non-experts.
The Pulsation logic speci�cation technique is optimized for expressing tempo-
ral behavior of sensor-based systems and allows non-programmers to specify
behavior without following extensive tutorials. In chapters 3 and 4, we showed
how Pulsation is embedded in respectively the PaperPulse and RetroFab de-
sign environments. The user evaluations and design sessions with PaperPulse
revealed several limitations of Pulsation 1.0:

1. Out of context logic speci�cations: Pulsation 1.0 visualizes logic in a
separate visual representation. Linking logic behavior back to electronic
components, once speci�ed, is often hard and requires careful inspection.

2. Control over variables: Pulsation 1.0 only provides access to elementary
variables of electronic components (e.g. value of a slider, state of a but-
ton, brightness of an LED). As custom variables cannot be created, every
condition relates back to one of the elementary variables in the design.
This signi�cantly increases the complexity as well as the total number of
conditions.

3. Several constructs limit the expressive power of Pulsation 1.0 : (1) No
support for combining conditional (if�then) and mapping (map�to) con-
structs. (2) No support for derived parameters (e.g. speed, progress,
etc.) in conditional statements. (3) Lack of precise control over param-
eters, such as excluding events while matching conditions, �ne grained
control over conditions that have to be completed sequentially over time,
and variable instead of constant timing parameters.

The �rst limitation impedes the ease-of-use for �rst time users (low thresh-
old). The other limitations interfere with supporting a wide variety of design
variations (high ceiling). To resolve these limitations and provide a higher
ceiling as well as a lower threshold, this chapter revises the logic speci�cation
approach in a new version, we call Pulsation 2.0.

5.1 Brief System Overview 101

5.1 Brief System Overview

Pulsation 2.0 language is based on a well-de�ned grammar and is supported by
a dedicated interpreter. Similar to the �rst version of Pulsation, Pulsation 2.0 is
optimized for running on microcontrollers but also runs on desktop computers
for simulation purposes. The language consists of visual elements in which the
program logic is speci�ed. The limitations of the �rst version, discussed in the
previous section, are addressed as follows:

1. In Pulsation 2.0, users specify logic by drawing visual links between elec-
tronic components and their associated attributes on the canvas. The
logic behavior is thus presented as an interactive graph in which the
nodes represent conditions and actions, while the edges link their respec-
tive event handlers. This lowers the threshold for users to get started
with Pulsation as users rely on a visual programming paradigm instead of
referring to attributes using abstract names. Furthermore, the visual de-
sign and logic behavior is presented in a single integrated representation
to ease interpretation.

2. Pulsation 2.0 presents novice users with elementary parameters of elec-
tronic components present in the design (e.g. value of a slider, state of a
button, brightness of an LED). Experienced users, however, can create
custom variables and access internal variables managed by the Pulsation
interpreter to realize advanced constructs.

3. All logic behavior is integrated in a single logic rule: conditional behavior.
Mapping constructs (map�to rules) are available as advanced assignment
actions that execute a transformation function on a variable. O�ering
a single logic construct lowers the threshold for novices. At the same
time, it increases the ceiling for experienced users as mapping behavior
is supported within conditional statements, which was not supported
before. To increase the ceiling further, derived parameters (e.g. speed,
progress, etc.) are available as functions for any expression. Additionally,
constants and variables are interchangeable throughout Pulsation 2.0.

Besides these advancements over the �rst version, Pulsation 2.0 also has
several strengths compared to existing visual programming methodolo-
gies introduced in Section 2.3. Unlike visual programming approaches
to avoid syntax errors, such as Scratch [Resnick 09], Pulsation 2.0 facil-
itates authoring the behavior of electronic components as every logic
construct o�ers precise control over timing properties. In contrast,

102 Pulsation 2.0: Visual Programming for Physical Interfaces

Scratch [Resnick 09] or visual programming approaches supported by
LEGO Mindstorms [Barnes 02, Erwin 00, Kim 07] require users to con-
struct complex algorithms using timers in order to match or produce
patterns over time. Amongst the visual programming approaches that
target speci�c domains, such as PureData [Puckette 96] for audio pro-
cessing or Nodebox4 graphical renderings, LabView [Wells 96] and pro-
gramming approaches in Loxone5 are optimized for sensor-based systems,
similar to Pulsation. However, both systems target experts and thus re-
quire users to follow extensive tutorials. The IFTTT system6 on the
other hand, simpli�es programming to elementary conditional behavior
involving only a single condition stimulus and action. IFTTT therefore
does not o�er the expressive power supported by Pulsation 2.0.

In Pulsation 2.0, we replaced the input set and output set terminology, used
in Pulsation 1.0, with conditions and actions as all logic constructs are part
of conditional behavior.

5.2 Pulsation 2.0 Grammar

The Pulsation 2.0 grammar consists of �ve constructs: variables, conditions,
actions, and events. Conditions are boolean expressions that evaluate the state
of variables, actions change variables, and events of conditions link to events of
actions. Pulsation has constructs that are speci�c to conditions or actions to
support loops and encapsulations (i.e. condition/action repeaters and condi-
tion/action encapsulations). By only making these constructs available when
composing either a condition or action, Pulsation eliminates the complexity
that comes when users compose functions or loops consisting of both con-
ditions and actions. Additionally, this separation signi�cantly simpli�es the
concept of logic connections. In this section, we elaborate on the di�erent
logic constructs available.

5.2.1 Variables

In Pulsation 2.0, elementary variables, inherent to speci�c components (e.g.
brightness variable of an LED or state variable of a switch), are automatically
available and appear to the user as a simple property of these components. For

4https://www.nodebox.net
5http://www.loxone.com
6https://ifttt.com

5.2 Pulsation 2.0 Grammar 103

complex designs, requiring additional variables to store intermediate states,
custom variables are supported in Pulsation.

5.2.2 Conditions

Pulsation 2.0 supports a wide range of basic conditional grammar for evaluating
the state of variables, including variable in high/low state, variable equals, vari-
able in between range, variable greater/smaller than, variable changed value.
Conditions related to Pulsation actions are also supported, such as evaluating
whether an action starts executing, is paused, or resets.

Condition aggregates consist of multiple conditions and a temporal relation-
ship. Pulsation supports the following temporal relationships for aggregates:

• Conjunction: True when all conditions are completed.

• Disjunction: True when at least one of the conditions is completed.

• Simultaneous: True when all conditions are completed at the exact same
time. Child of child conditions are not subject by the grandparent con-
dition node with a simultaneous temporal constraint.

• Ordered: True when all conditions are completed in the speci�ed order.
Child conditions are allowed to match multiple times. Child of child
conditions are subject by the grandparent condition node with an ordered
temporal constraint to enforce the order of matches.

• Ordered-Strict: Same semantics as the ordered temporal constraint. Ad-
ditionally, the ordered-strict constraint enforces child conditions to match
exactly once, except for con�icting conditions.

Condition aggregates also support a modal operator similar to Linear Tem-
poral Logic (LTL) speci�cations [Wolper 83]. The modal operator in Pulsation
works as an electronic latch and ensures that a condition remains completed
for its parent condition even when it is not satis�ed anymore. This operation
is oftentimes required when a condition consists of con�icting child conditions.
For example, a condition specifying that a button has to be pressed and then
released. In this example, at least the �rst child condition requires using the
latch operator. Pulsation also supports an advanced modal operator to specify
that a condition needs to remain satis�ed until a certain moment (external
condition) before the latch takes over. Every aggregate condition also list
conditions that cannot be satis�ed while completing the aggregate condition.
When one of these conditions do take place, the aggregate construct resets.

104 Pulsation 2.0: Visual Programming for Physical Interfaces

Derived condition operators calculate a speci�c derived parameter of the
child condition, examples include:

• Repeater: The number of times the child condition is completed.

• Inverse: The inverse of the condition.

• Time to complete: Duration of time to complete the �rst and last con-
dition of a condition aggregate.

• Time completed: Duration of time the condition is already satis�ed.

• Progress: Percentage of conditions completed.

• Speed: Speed with which child conditions are completed.

These derived parameters are also available as variables and can be used in
other conditions or as the �stop-condition� of the derived condition e.g. re-
peater is satis�ed when child condition is completed two to �ve times. Ar-
bitrarily complex constructs are realized by nesting condition aggregates and
derived condition operators.

5.2.3 Actions

Pulsation supports a wide range of actions including, assignments, increments,
decrements, and other basic mathematical operations on variables. Besides,
assignments that are subject to more advanced mathematical functions are
supported (mapping constructs). For example, transitioning the value of a
variable (e.g. brightness of an LED) over a period of time.

Similar to conditions, Pulsation also supports aggregates and derived ac-
tions. While basic action aggregates encapsulate actions that execute all at
once, action aggregates with time support allow for specifying delays between
actions. We also propose two derived action operators: repeaters and progress
regulators. Repeaters loop over child conditions until the stop condition is
completed. Progress regulators execute a variable number of child actions.

5.2.4 Events

To associate conditions and actions, Pulsation supports a set of events for
conditions, including activated, deactivated, tick active (raised every CPU cy-
cle during which the condition is satis�ed), tick not active (raised every CPU
cycle during which the condition is not satis�ed). Similarly several events/sub-
actions are supported for actions, including execute, pause, resume, and reset.

5.3 Pulsation 2.0 Visual Logic Speci�cations 105

In contrast to all other logic constructs, interconnections between these events
are established outside the interpreter and thus interpreted directly by the mi-
crocontroller. This signi�cantly reduces the memory consumption as projects
oftentimes consist of a high number of logic connections. Besides, these con-
structions allow advanced users and programmers to link custom-written code
to Pulsation actions or conditions.

5.2.5 Grammar Instance

Appendix A shows how to initialize the grammar of a more complex interactive
system. The grammar instance speci�es the conditions, actions, and events
for an advanced code slot mechanism on a numpad. In this example, pressing
button 1 needs to be followed by simultaneously pressing buttons 8 and 9. This
sequence has to be repeated twice within 10 seconds to complete the code slot.
The condition sequence speci�es that when invalid buttons are pressed, the
sequence resets. When the input sequence is completed in time, an LED turns
on to notify the user that he is logged in. When the user starts interacting
with the numpad but does not enter the correct sequence in time, a buzzer
repeatedly beeps. To help users observe their progress, the progress through
the event sequence is represented by 6 LEDs, one for every button that has to
be pressed.

5.3 Pulsation 2.0 Visual Logic Speci�cations

We simplify composing Pulsation grammar by allowing users to draw visual
links between electronic components. Although visual links improve the visi-
bility and overview for non-experts, it is oftentimes unclear how simple links
translate Pulsation grammar. Even for simple components, such as linking a
pushbutton to an LED, dozens relationships are possible including, turning the
LED on when pushed and turning it o� when pushed again (toggle), turning
the LED immediately o� when the button is released. Alternatively, the LED
can fade in over time or blink. Therefore we devise an interaction paradigm for
constructing a detailed logic graph to precisely link conditions to actions. As
our Pulsation grammar o�ers unlimited possibilities for composing condition
and action, our technique is scalable while at the same time simple to grasp
for �rst-time users.

106 Pulsation 2.0: Visual Programming for Physical Interfaces

Figure 5.1: Linking the state of a switch to the brightness of an LED.

5.3.1 Conditions and Actions with Individual Variables

Figure 5.1 demonstrates the basics of the Pulsation visual logic speci�cation
approach: (a) Clicking on an electronic component reveals a hierarchical radial
menu consisting of conditions and actions that relate to the variable associated
with that component (e.g. brightness variable of an LED). This includes basic
conditions and actions (e.g. brightness equals x, turn LED on), as well as
derived conditions and actions (e.g. LED on for x seconds, fade LED from x to
y in t seconds). While hovering over these conditions and actions, associated
events appear. (b) Events of conditions are linked to events of actions by
drawing visual links using a drag-and-drop interaction style. (c) We specify in
this example that every time the switch changes its state, the brightness of the
LED is assigned to the state of the switch.

To facilitate the readability and comprehension of conditions and actions,
variables, have names that re�ect their meaning (e.g. brightness for LEDS,
state for switches, and value for sliders). However, concepts, such as assign-
ments of variables and constants might still be hard to grasp by �rst-time users.
Therefore, redundant conditions and actions are available which are automat-
ically tuned with frequently selected constants. Examples include conditions,
such as button pressed, button released, switch on, switch o�; or actions such

5.3 Pulsation 2.0 Visual Logic Speci�cations 107

Figure 5.2: Alternative solution for linking the sate of a switch to an LED.

as LED on and LED o�. Figure 5.2 shows an alternative solution for linking a
switch to an LED. In this solution, the on and o�-state are individually linked
to the minimum and maximum brightness of the LED.

The Pulsation logic speci�cation approach includes context aware strate-
gies. When connecting to/from a central condition or action node in the radial
menu, the system automatically selects the most appropriate leaf node in that
context. For example, linking a switch to an LED automatically links the most
appropriate condition i.e.�switch on� to the most appropriate action i.e.�LED
on�. Additionally, the system suggests to automatically add an undo operation
to link the �switch o�� condition to the �LED o�� action. This context-aware
decision support mechanism ensures that interactive systems are always oper-
ational and users gradually re�ne and discover more options.

In contrast to the �rst version of Pulsation (Section 3.5), Pulsation 2.0
solely consists of conditional rules. Mapping constructs in which the value of a
variable (e.g. slider) is continuously mapped to another variable (e.g. bright-
ness of an LED) are realized using the �tick� events supported by conditions
(Section 5.2.4). Figure 5.3 shows how the value of a slider is continuously as-
signed to the brightness of an LED as long as the switch is in the on-state. To
perform this mapping independent of the state of the switch, a special appli-
cation event exists that is triggered every CPU cycle (Figure 5.4). Mapping
constructs are thus considered as assignment actions. By expanding the op-
tions associated with a reference link to a variable, a transformation function

108 Pulsation 2.0: Visual Programming for Physical Interfaces

Figure 5.3: Continuously assigning the value of a slider to the brightness of an LED
when a switch is in the on-state.

can be speci�ed. Figure 5.4 shows how to invert the value of the slider before
assigning it to the brightness of the LED.

By default, only the parameters of widgets added to the canvas are shown
on the screen. More advanced users can also add custom variables to the canvas
to save intermediate states. For example, when assigning the inverted signal
of a slider to the brightness of multiple LEDs, the inverted value can �rst be
stored in an intermediate state and then be assigned to the brightness of all
LEDs. Without custom variables, an additional transformation function would
be needed between the slider and every single LED. This would increase the
complexity of the visual code and have a negative impact on the readability
and evolvability of the code.

5.3 Pulsation 2.0 Visual Logic Speci�cations 109

Figure 5.4: Continuously assigning the inverse value of a slider to the brightness of
an LED.

110 Pulsation 2.0: Visual Programming for Physical Interfaces

5.3.2 Composite Conditions and Actions

The radial menus presented in the previous section o�er conditions and actions
in the context of a single variable. Advanced conditions and actions consisting
of multiple variables, are authored using a condition and action composer.
Using these advanced composers, aggregate conditions/actions are nested to
support precise control of timing parameters and relations between variables.

Figure 5.5 shows a condition composer consisting of a nested aggregate
and derived condition to specify that three switches have to be turned on, in
a sequential order, within 5 seconds to make the LED fade in. More aggre-
gate conditions, derived conditions, or the modal operator (Section 5.2) are
added using the �add operation� drop-down menu. The �ve derived conditions
presented in the grammar (Section 5.2), are available through this menu, in-
cluding time to complete, time completed, speed to complete, inverse, repeater,
and progress. Some of these derived constructs automatically add derived vari-
ables to the system, such as time, speed, number of repetitions, etc. These
variables are used similarly to regular variables, although conditions on these
variables oftentimes link back to the same derived construct to realize stop-
conditions (e.g. minimum number of repetitions or maximum time to start
and complete the condition).

By clicking on the header of aggregate conditions, one can loop through
the di�erent temporal relationship (i.e. conjunction, disjunction, simultaneous,
ordered, or ordered-strict). Conditions are dragged in the �exclude� section of
an aggregate construct to specify states of variables that may not be registered
while completing the aggregate condition. Using the black arrow shown in the
right-bottom corner of every aggregate or derived condition, one links events
of sub-conditions in the nested hierarchy.

Figure 5.6 shows an action composition that is triggered by a condition
composition. In this example, the push button needs to be pressed for four
seconds and released to complete the condition and make the LED blink twice.
The action composer works similar to the condition composer and o�ers derived
action constructs, including a repeater and progress regulator. A time-line is
featured to precisely control the delay between actions. Actions that take place
over time support additional events/sub-actions, as presented in the grammar
in Section 5.2.4 (i.e. restart, pause, resume).

We now reconsider the interactive card for learning mathematical sums
that was designed during the workshop with PaperPulse (Figure 3.26c). In
the �rst version of Pulsation, this design required 45 rules, one to check the
validity of every possible combination of the three slider values. In Pulsation

5.3 Pulsation 2.0 Visual Logic Speci�cations 111

Figure 5.5: Turning all switches to on within 5 seconds will start fading the LED.

112 Pulsation 2.0: Visual Programming for Physical Interfaces

Figure 5.6: Pressing the push button for four seconds and releasing it afterwards
makes the LED blink twice.

5.4 Architecture and Implementation 113

2.0, this behavior can be speci�ed with only 12 logic rules. The solution consists
of three custom variables, one for every pull-chain slider. Eleven logic rules,
one for every value in the pull-chain sliders, ensure that the currently selected
value (displayed value on the slider) is represented in the corresponding custom
variable. The last logic rule veri�es the validity of the sum. Specifying the
behavior of this solution requires signi�cantly less e�ort, is less error prone,
and is easier to maintain as compared to the �rst solution.

5.4 Architecture and Implementation

Similar to the �rst version of Pulsation (Chapter 3), Pulsation 2.0 is imple-
mented in C# and uses the .NET Micro Framework speci�cations to ensure
its portability to microcontrollers supporting the .NET MF. We developed a
Pulsation interpreter that evaluates condition grammar and executes action
grammar. Pulsation grammar is uploaded to the microcontroller by generat-
ing code that re-instantiate the entire Pulsation grammar hierarchy that was
composed by the user (Appendix A). In contrast, events between conditions
and actions are established by generating event handling mechanisms using the
.NET CodeDom, directly in C#. On the one hand, this reduces the amount of
working memory that would be required to model all events in the Pulsation
interpreter. On the other hand, more experienced users, with programming
experience, can write custom code that links to the generated project using
these traditional event handlers.

Every Pulsation project consist of 4 assemblies that are uploaded to the
microcontroller: the core interpreter, condition interpreter, action interpreter,
and generated code. The core interpreter assembly requires 8kb of program
memory and consists of the main interpreter loop, utility functions, and code
to manage Pulsation variables. The condition interpreter assembly requires
32kb of program memory and consists of all condition constructs supported
by Pulsation. The action interpreter assembly requires 20kb of program mem-
ory and consists of all action constructs supported by Pulsation. The fourth
assembly includes the generated code for instantiating the Pulsation grammar
and event handlers. The size of this assembly depends on the complexity of
the project and on average requires less than 10kb of program memory. The
three interpreter assemblies are compiled upfront. The assembly containing
the generated code is compiled at run-time within the design tool, every time
the user updates the Pulsation logic.

Similar to the �rst version of Pulsation, Pulsation 2.0 achieves a modu-
lar design. Uploading all supported module requires a minimum of 60kb of

114 Pulsation 2.0: Visual Programming for Physical Interfaces

program memory on microcontrollers. However, future versions could opti-
mize these memory requirements by compiling only the logic constructs that
are used in a speci�c project. This signi�cantly reduces the size of Pulsation
projects as only a very small subset of the Pulsation logic constructs are used
in the majority of projects.

Every logic construct requires one byte of working memory memory to store
its internal state. Pulsation optimizes memory consumption by dynamically
selecting the type of Pulsation variables based on the value resolution that is
required. By default, variables representing time consume only a single byte
but are limited in resolution to a tenth of a second. Additionally when the
number of Pulsation variables does not exceed 255, Pulsation variables are
stored in a custom bank of memory that is addressed with a single byte.

5.5 Pulsation 2.0 E�ectiveness Attributes

To demonstrate the e�ectiveness of our approach, we show how Pulsation 2.0
reduces solution viscosity and supports power in combination. These are two
important attributes that contribute to the e�ectiveness of visual programming
paradigms and authoring tools in general, as stated by Olsen [Olsen 07].

5.5.1 Reducing Solution Viscosity

Programming approaches with a low solution viscosity minimize the e�ort
required to iterate over di�erent solutions. Pulsation 2.0 reduces the solution
viscosity in three ways:

1. Flexibility : Composing and altering logic is convenient with Pulsation.
By simply linking basic logic constructs, the behavior of electronic com-
ponents is changed. These changes are immediately compiled and inter-
preted. As such, the user can verify changes quickly using the Pulsation
simulator.

2. Expressive Leverage: is achieved when a tool reduces the total num-
ber of choices that a designer must make to express a desired solu-
tion [Olsen 07]. Pulsation 2.0 reduces the number of design choices by
automatically instantiating options that are implied by the user's de-
sign choices. First of all, Pulsation reasons that when designing phys-
ical interfaces with electronic components, there is a fundamental need
for precise control of timing properties. Hence, action and condition
primitives in Pulsation are mainly oriented towards control over time.

5.5 Pulsation 2.0 E�ectiveness Attributes 115

Secondly, adding an electronic component automatically declares new
variables in the system to represent internal states. Depending on the
type of the electronic component, the variable has a speci�c type e.g.
binary, continuous, discrete. Additionally, Pulsation makes it convenient
for users to use frequently selected values depending on the type of vari-
able, such a LED in the on or o�-state. Similarly, some condition and
action constructs automatically declare variables, including the number
of repetitions for repeaters, or the time to complete a condition. Finally,
when composing basic conditions, such as an LED turning on when the
switch is in the on-state, Pulsation automatically suggests adding the
inverse/undo operation.

3. Expressive Match: refers to how close the means for expressing design
choices is to the problem being solved. Pulsation 2.0 adheres to this
principle by allowing users to simply draw links between logic constructs.
Using these visual links, abstract names for referring to electronic com-
ponents and logic constructs are avoided. Although some advanced Pul-
sation constructs introduce additional layers of abstraction on top of the
problem being solved, �rst-time users interconnect basic states by simply
drawing links between electronic components. Additionally, the condi-
tions and actions are context speci�c e.g. LED on/o� or transitions in
brightness over time, push button pressed/released. In contrast, tradi-
tional programming approaches o�er constructs which are independent
of the variables used in the context. Similarly, Pulsation facilitates using
time constructs without relying on abstract timers or timestamps as in
traditional programming approaches.

5.5.2 Power in Combination

Olson [Olsen 07] de�nes Power in Combination as the way user-interface tools
can support new components to create new solutions. First of all, Pulsation 2.0
o�ers unlimited design variations using a limited set of primitives consisting of
variables, conditions, actions, and events. These primitives are combined and
nested to realize advanced behavior. Similar to primitives, advanced condition
and action constructs can be used in other primitives, thus realizing unlimited
design variations. Secondly, all electronic components and logic constructs
realize their behavior by manipulating Pulsation variables. This makes it con-
venient to interchange or introduce new components to Pulsation.

116 Pulsation 2.0: Visual Programming for Physical Interfaces

5.6 Discussion

When designing a visual programming language, it is always challenging to
select which parameters should be concealed and which should be revealed to
the user. Revealing too many parameters increases the threshold for �rst-time
users while concealing many parameters will not allow for many design varia-
tions (low ceiling). Pulsation reveals high-level parameters that are especially
relevant when specifying logic for sensor-based system (e.g. timing properties).
Pulsation 2.0 advances the �rst version of Pulsation (Section 3.5) and o�ers a
higher ceiling by supporting a more comprehensive logic grammar and custom
variables. At the same time, Pulsation 2.0 lowers the threshold for �rst-time
users by representing logic behavior as a visual graph. As such, users do not
have to write textual code statements that are prone to syntax errors, or re-
fer to constructs using abstract names. Additionally, the system assist users
in composing this logic graph. For example, Pulsation 2.0 automatically in-
terconnects the most appropriate conditions and actions when two electronic
components are linked.

On a high level, Pulsation 2.0 grammar consists of variables, conditions,
actions, and events. Basic constructs available in traditional programming
languages, such as functions (encapsulation) and loops are available within
condition and action constructs. This lowers the threshold for �rst-time users
as Pulsation does not require learning many di�erent programming concepts.
Pulsation 2.0 allows users to interconnect conditions and actions and gradually
advance to more complex constructs. Our programming approach therefore
targets users who want to �use programming [Kelleher 05]�. Transitioning from
programming in Pulsation to traditional programming languages is less trivial,
therefore the current version of our programming approach is less suited for
students to learn basic programming concepts.

As many embedded systems are in�uenced by some sort of temporal behav-
ior, the majority of logic constructs in Pulsation 2.0 o�er control over timing
parameters. Although Pulsation 2.0 is demonstrated in this chapter in the
context of the PaperPulse design environment (Chapter 3), the approach can
be integrated in other systems to facilitate programming sensor-based systems.

Despite the �exibility of Pulsation 2.0, it can be extended in the future in
several ways: First, Pulsation 2.0 allows users to encapsulate and thus reuse
composed constructs in other conditions or actions. However, the current
implementation does not support parameterizing logic constructs to reuse them
within a di�erent context. For example, a condition that veri�es whether a
switch is in the on-state can be encapsulated in another condition to verify

5.7 Summary 117

whether a button is pressed at the same time. However, that same condition
cannot be used to verify whether another switch is in the on-state. Future
versions could support parametrization options for advanced users.

Second, the number of links between logic constructs can expand quickly
when specifying complex behavior. This clutter can be reduced in the future,
by exploring visualization and interaction techniques for graphs. For example,
the edges of the graph can be routed to avoid intersections. Additionally, only
edges that the user is currently investigating can be revealed by hovering over
the associated nodes.

Third, the current version supports basic electronic components, such as
LEDs, buttons, switches, and sliders. Future versions can extend the set of
electronic components and support sensors, such as accelerometers, graphical
displays, sensors supporting touch or gestural interaction, or wireless commu-
nication. Similar to basic electronic components, these advanced components
can be supported as widgets on the canvas. Although advanced sensors could
be programmed using elementary logic constructs supported by Pulsation 2.0,
such as thresholding, average, and basic mathematical operations, specify-
ing more complex behavior could become cumbersome. Future versions could
support high-level parametric actions and conditions, such as movement pat-
terns for accelerometers or visual primitives for graphical displays. For some
sensors it might also be appropriate use a programming-by-demonstration ap-
proach [Hartmann 07] and allow users to specify input or output patterns by
demonstrating patterns directly using the sensors. Alternatively, advanced
users and programmers can link custom code to events in Pulsation.

Last, to lower the threshold further for realizing advanced constructs with
Pulsation, more abstraction layers can be added in the future to automatically
�ll-in appropriate logic details. However, automatically adding the correct
logic behavior is non-trivial and oftentimes depends on the context in which
it it used. Therefore, advanced algorithms and machine learning techniques
could be considered to automatically suggest logic details based on the behavior
already speci�ed.

5.7 Summary

In this chapter we presented Pulsation 2.0, a visual logic speci�cation paradigm
that resolves the limitations of the �rst version (Section 3.5) by o�ering in-
context logic speci�cations, custom variables, and additional expressive power.
As such, Pulsation 2.0 provides a higher ceiling and lower threshold to get users
started (C4). Pulsation is optimized for specifying the behavior of sensor-based

118 Pulsation 2.0: Visual Programming for Physical Interfaces

systems for users without a programming background. In contrast to the �rst
version, Pulsation 2.0 only consists of variables, conditions, actions, and events.
This is essential to lower the threshold for �rst-time users as they can simply
draw relations between electronic components. More advanced logic behavior
is realized by adjusting additional parameters or using advanced compositions.
Similar to the �rst version, Pulsation is optimized for microcontrollers but also
runs on desktop computers for simulation purposes.

Chapter 6

Paddle: Real-Time Physical Transformations

6.1 Introduction

The systems outlined in Chapters 3 and 4 o�er an enabling technology for
laypeople to fabricate new and adapt existing physical interfaces. However,
the work�ow to make these interfaces, including the production time of DIY
machinery, ranges from a few hours until a full day. Although this is accept-
able for designing systems that only require changes once in a while, these
fabrication approaches are not suitable to create interfaces that require fre-
quent changes in their physical layout. Examples include tactile keyboards on
mobile devices, which ideally would support di�erent physical con�gurations
for di�erent modes, settings, or applications, depending on the context (e.g.
application) that is currently being used. Hence, these tactile keyboards on
mobile devices have been replaced by touch screens at the expense of tangible
interactions.

To preserve the richness and qualities of tangible controls, such as physical
a�ordances [Ishii 97] and eyes-free use [Fitzmaurice 95], in this chapter, we
investigate technologies that enable laypeople to adapt the physical con�gura-
tion of interfaces in real-time (G3). More speci�cally, we explore techniques to
embed materials in interfaces that allow for fast transitions in their physical
state (C1). As such, the physical interface itself transforms to various physical
controls depending on the context of use. We demonstrate this concept in the
context of mobile devices. Especially in these settings, supporting a diverse
set of physical controls is challenging, as outlined in the previous paragraph.

120 Paddle: Real-Time Physical Transformations

Figure 6.1: Paddle supports several physical controls, including (a) peeking, (b)
scrolling, (c) lea�ng.

Figure 6.1 shows our prototyped mobile device, called Paddle, that can be
transformed to various physical controls, including a window to peek at con-
tent (Figure 6.1a), a ring to scroll through lists (Figure 6.1b), and a book-like
form factor to leaf through pages (Figure 6.1c).

Previously, researchers explored how bending [Kildal 13, Lahey 11] and
folding [Gallant 08, Khalilbeigi 12] interactions, supported by deformable mo-
bile devices, can be used as physical controls. Compared to traditional physical
controls, however, these controls lack a�ordances in that it is often unclear how
folds and bends map to actions [Lahey 11]. In contrast, Paddle transforms to
various physical controls and thus combines the �exibility of touch screens
with the physical qualities of real world controls. As a side e�ect, Paddle also
bridges the gap between di�erently shaped mobile devices, such as phones,
tablets and wristbands.

In the following, we �rst give an overview of the system. Next, our in-
teraction design space elaborates on the design choices when designing for
transformable devices. We then provide details on the mechanical engineering
and implementation of the system. Afterwards, two controlled experiments

6.2 Brief System Overview 121

report on the di�erences between interacting using the physical controls sup-
ported by Paddle and traditional direct touch input. We end with a discussion
and summary of the presented work.

6.2 Brief System Overview

The mechanical construction of our prototype, Paddle, is based on princi-
ples used in the design of the Rubik's magic puzzle, a folding plate puzzle
(Figure 6.7). Tiny infrared re�ective markers are attached to this device and
tracked with an optical tracking system. This enables us to project on the de-
vice to provide visual output from a ceiling mounted projector. Similarly, touch
input is enabled by tracking the �ngers of the user. In the future however, we
envision Paddle devices to be self-contained using electronic connectors to track
the topology of the device [Gorbet 98] and tiny integrated displays [Merrill 07],
as those used in Tilt displays [Alexander 12] and Facet [Lyons 12], for visual
output. In contrast to Paddle, earlier prototypes of transformable mobile de-
vices [Gallant 08, Khalilbeigi 12, Lahey 11] are paper-like and thus support an
origami transformation model that often requires numerous transformations.
As Paddle is based on engineering principles used in the design of 3D puzzles,
the transformation model is superior to origami and allows switching between
di�erent shapes in only a few steps (e.g. two steps to change a small �at form
factor (Figure 6.1a) into a ring (Figure 6.1b)).

Similar to the system developed by Darliri et al. [Daliri 16], Paddle provides
visual help cues to communicate transformation possibilities and guide the user
(Figure 6.4a,e,g). These cues are only displayed when the user places his �ngers
at prede�ned spots, visualized by virtual �ngers (Figure 6.4b,d). This approach
(inspired by TouchGhosts [Vanacken 08]) reduces visual clutter and shows how
to hold Paddle to perform di�erent transformations. On the other hand, users
can always choose to perform transformations that are not supported by the
current form factor (Figure 6.3). In these situations, help cues are provided to
backtrack to a supported con�guration.

Figure 6.4 shows an example interaction that illustrates how Paddle can
be used. (a) Adam gets a call from his close friend John on his Paddle, to see
if he is in for a hike this week. (b-c) Adam answers the call by unfolding the
compact device to a �ip phone, which is more comfortable to hold while calling.
(d) After a short chat Adam quickly transforms the device into a ring shape to
scroll through the weather forecast of the next days. (e-f) On Wednesday and
Thursday the weather looks perfect for a hike and Adam transforms the device
into an agenda book through which he can leaf to see when he is available.

122 Paddle: Real-Time Physical Transformations

Figure 6.2: Tiny infrared re�ective markers (highlighted in orange) are attached to
the device.

(g) Both agree to hike on Tuesday and Adam unfolds his Paddle to see his
schedule for that day. (h) Meanwhile, Adam can peek to check the status of
the call or look for incoming emails. (i) Adam notices that he is only available
in the afternoon and adds the appointment. (k) He unfolds his Paddle to a
map on which he can plan a hike through the woods.(j) At the end of the call,
John and Adam say goodbye and Adam folds his Paddle back in a compact
form to �t inside his pocket.

6.3 Interaction Design Space of Transformable De-

vices

Transformable mobile devices provide various new opportunities for interac-
tion design. We categorized these novel opportunities for interaction design in
a design space. Transformable devices can also be considered in design spaces
other than interaction design, such as design spaces elaborating on engineering
techniques and principles (e.g. shape resolution [Roudaut 13]). In our inter-
action design space, we identi�ed two dimensions: the initiative to transform
and the intent of the transformation.

6.3 Interaction Design Space of Transformable Devices 123

Figure 6.3: The transformations that are supported by Paddle. This is only a
subset of the transformation model of the Rubik's magic puzzle, which is at the basis
of our prototype.

124 Paddle: Real-Time Physical Transformations

Figure 6.4: An example interaction that illustrates how Paddle could be used during
a call.

6.3 Interaction Design Space of Transformable Devices 125

6.3.1 Initiative to Transform

Either the user or system might take initiative to perform a transformation.
For transformable devices that only transform manually, such as Paddle, users
always initiate the transformation, even though the system might guide users
by suggest transformation possibilities. The system interprets these types of
user initiated transformations as input. We therefore consider this type of
transformation as a novel input modality. In contrast, actuated transformable
devices, such as Morphees [Roudaut 13] or MorePhone [Gomes 13] are initi-
ated by the system to reveal output, such as incoming messages. Some systems
(e.g. inFORM [Follmer 13]) support transformations as input (user initiated
transformation) as well as output (system initiated transformations) modali-
ties. Here it is important to note that although a transformation initiated by
the system might be a direct response to an action of a user, we still consider
the physical transformation to be initiated by the system. For example, the
user presses a button after which the system initiates a transformation of the
device.

6.3.2 Intent of the Transformation

The wide variety of transformations (both user and system initiated), sup-
ported by transformable devices, can serve di�erent purposes. We identi�ed
three main intents for the shape of a device to transform:

1. Shape �ts digital content: As demonstrated in earlier prototypes of trans-
formable devices [Khalilbeigi 12, Khalilbeigi 11], enlarging a device can
reveal additional data or tools (Figure 6.5b). Alternatively, the same
content can take up a larger space as a way to zoom-in on data (e.g. text
or maps). Oftentimes, it is also desirable to have a semantical zoom,
providing a more detailed or concise version of the same content when
a device changes in size. Finally, the physical form or shape can re-
�ect the digital content [Lee 08]. For example, in Figure 6.3 the tiles
of con�guration (a) can re�ect di�erent elements of a list, (c) has the
size of a traditional phone, (e) �ts a traditional portable game console
(Figure 6.5a) and (g) matches the size of a sheet of paper.

2. Shape �ts interaction style (ergonomics): Interacting with a physical
shape also relates to the comfort that it provides. For example, it is
often more comfortable to read text on a large screen (e.g. Figure 6.3g).
Likewise, shapes that are easy to support by the palm of the hand provide

126 Paddle: Real-Time Physical Transformations

Figure 6.5: Transformations supported by Paddle can be used for many purposes,
for example, (a) a game controller, (b) opening a toolpalet.

more comfort during touch interactions (more normal force [Dijkstra 11]).
Other shapes make a larger region accessible for thumb interactions or
position the microphone and speaker closer to the mouth and ear to
improve voice and sound quality during calls1.

Some shapes might also o�er a�ordances that better suit certain inter-
action styles. Manipulating the angle of the extra panel in Figure 6.5b
could control the value of a slider, as demonstrated in the FoldMe sys-
tem [Khalilbeigi 12]. Figure 6.6 shows some con�gurations of the Paddle
prototype that o�er a�ordances and interaction styles that map partic-
ularly well to the task at hand, including peeking, scrolling, and leaf-
ing. In this last con�guration, pages continuously �ip from one side to
the other to simulate an unlimited number of pages. Figure 6.3 shows
these three interactions styles within the Paddle transformation model:
con�gurations (b) and (e) support peeking (Figure 6.6a1), con�guration
(a) supports scrolling (Figure 6.6b1) and con�guration (b) also supports
lea�ng (Figure 6.6c1).

3. Con�guration �ts social setting: A device can also transform to accom-
modate the social setting that it is used in. MorePhone [Gomes 13] shows
how lifting the corner of a device provides a subtle noti�cation for in-
coming messages without disturbing others. Alternatively, peeking at

1http://www.lgnewsroom.com/newsroom/contents/63988

6.3 Interaction Design Space of Transformable Devices 127

Figure 6.6: Paddle shows how physical controls for (a1) peeking, (b1) scrolling
and (c1) lea�ng can be brought to mobile devices as alternatives for traditional touch
interactions (a2,b2,c2).

128 Paddle: Real-Time Physical Transformations

content with Paddle, using the con�guration shown in Figure 6.6a1, can
reveal private content to mitigate shoulder sur�ng. Likewise, making
calls using Paddle's phone con�guration (Figure 6.4c), brings the micro-
phone and speaker closer to the mouth and ear to have a more private
conversation.

In many situations, the intent of a transformation is not mutually exclusive.
For example, one might transform Paddle to the �at shape shown in Figure 6.3g
to display a full page of text (shape �ts digital content) and enjoy better reading
comfort [Jabr 13] (shape �ts interaction style).

6.4 Engineering and Implementation

6.4.1 Mechanical Construction

While transformable devices are not commercially available as yet, we aim at
prototyping a mobile device that provide similar interaction styles. Our pro-
totype, Paddle, is based on engineering principles used in creating 3D puzzles.
3D puzzles have already existed for centuries2, thus capturing a vast amount
of design knowledge in constructing compact mechanisms to enable complex
transformations.

Our prototype leverages engineering principles of the Rubik's Magic design
(Figure 6.7), a folding plate puzzle. The original goal of the puzzle is to
transform the tiles until the pictures on the di�erent tiles all line up and form
an interconnection of rings (Figure 6.7a,b).

The design of the puzzle consists of a loop of square sized tiles held together
by wires. A special wiring technique, where every wire runs diagonally across
the tiles, ensures that all tiles can hinge along two adjacent sides. The location
of these hinges is di�erent when a tile is on top or underneath another tile. This
technique is an extension of the Jacobs Ladder folk toy principle. Although
the puzzle only transforms piece-wise, the special engineering principles used
in the hinges allow for transforming the puzzle to various shapes (Figure 6.7).
Figure 6.8 shows how the wires �ip between the tiles to move a hinge from
one side of a tile to another adjacent side, when going from a �at form factor
(Figure 6.3g) to a ring (Figure 6.3a).

2Scienti�c American, Volume 16 Nr. 15, 1889, page 227

6.4 Engineering and Implementation 129

Figure 6.7: Paddle leverages engineering principles of the Rubik's Magic puzzle:
(a) start con�guration and (b) end con�guration of Rubik's Magic, (c) some of the
other supported shapes.

Figure 6.8: The wiring pattern used for the hinges in Paddle: (a) �at form factor,
(b) ring form factor.

130 Paddle: Real-Time Physical Transformations

Figure 6.9: Paddle uses an eight-camera OptiTrack system to track the topology
of the device and a ceiling projector to provide visual output.

6.4.2 Software Implementation

Paddle uses an eight-camera OptiTrack system to track the topology of the
device and a ceiling projector to provide visual output (Figure 6.9). This
makes the current version of the mobile device entirely passive. By attaching
�ve tiny infrared re�ective markers on both sides of every tile, we can track the
position and rotation of every tile and distort every region of the projected user
interface precisely (Figure 6.2). The Rubik's magic puzzle is painted white to
make the projection clearly visible.

To enable touch interactions, markers are attached to the users' �ngers. We
calibrate every �nger to get a precise estimate of the location of the markers
on the �ngers. When a �nger touches our device, TUIO events are generated
and translated into touch events using Multi-Touch Vista 3. Our entire system
is implemented in C#/WPF, making it possible to use the Microsoft Surface
SDK4 to have the same look-and-feel as traditional touch screens.

In the future, however, we envision devices similar to Paddle that are en-

3http://multitouchvista.codeplex.com/
4http://msdn.microsoft.com/en-us/library/�727815.aspx

6.5 User Study 1: Physical Controls vs Direct Touch 131

tirely self-contained, using electronic connectors to track the topology of the
device [Gorbet 98] and tiny integrated displays [Alexander 12, Lyons 12] for
output. The wires necessary for interconnecting these displays and sensors
can replace the wires used in the hinges to not interfere with transformation
possibilities.

6.5 User Study 1: Physical Controls vs Direct Touch

Although there are di�erent intents to transform Paddle to various con�gu-
rations (Section 6.3.2), Paddle's ability to transform in real-time to di�erent
physical con�gurations (shape �ts interaction style) captures the main moti-
vation of the work in this thesis (G2).

The physical control supported by the Paddle prototype are di�erent from
traditional tangible controls [Ishii 97, Fitzmaurice 95]. Similar to direct touch,
the Paddle combines input and output in a single space, making input indistin-
guishable from its graphical output. In contrast, manipulating traditional tan-
gible controls are perceptually coupled to their digital counterpart [Ullmer 00]
which often reduces the feeling of engagement with digital content [Hancock 09,
Terrenghi 08]. Although direct touch and physical controls supported by Pad-
dle both o�er clear a�ordances, the interaction styles they adopt are very
di�erent: direct touch relies on pointing as sole interaction technique whereas
various grasps are used to interact with the physical controls supported by
Paddle.

In a �rst experiment, we investigate the di�erences between using physical
controls supported by Paddle, and traditional direct touch input typically used
on mobile devices. We picked peeking, scrolling and lea�ng, as they are good
representatives of physical controls supported by our prototype and equivalent
interactions are supported on many touch screens (Figure 6.6).

6.5.1 Task Designs

Similar to earlier studies [Buxton 86, Hancock 09], we compare the interaction
styles by considering both physical skills as well as the e�ects on the human
congnition. Our task designs are based on best practices for measuring dif-
ferences in skill and motor behavior [Schmidt 88]. Various pilot studies were
conducted to calibrate the di�culty of the task sets.

132 Paddle: Real-Time Physical Transformations

Figure 6.10: Our �rst study compares (1) physical to (2) touch interactions for (a)
peeking, (b) scrolling and (c) lea�ng tasks.

Peeking

For this task, 9 di�erent symbols (out of a set of 17 di�erent symbols e.g. a
circle, triangle, star) are displayed at random positions in a grid (Figure 6.10a).
When performing a peeking interaction, all 9 symbols plus an additional sym-
bol become visible at random locations on the window that is revealed (Fig-
ure 6.10a). The original window then becomes invisible to encourage more
peeking interactions. The task is completed when the user identi�es the ad-
ditional symbol. In the physical condition, the peeking window is located on
the upper side of the device, while in the touch condition, the peeking window
can be opened by dragging the window from left to right which reduces the
e�ect of occlusions caused by the hand. While the participant �nds the missing
symbol, we measure task completion time and number of peeks as measures of
performance.

Scrolling

The main goal of the scrolling task is to encode a given word into a series
of digits, as fast as possible, using the encoding list displayed on the device
(Figure 6.10b). The user can scroll through a look-up table that has 26 entries,

6.5 User Study 1: Physical Controls vs Direct Touch 133

one for every letter in the alphabet, using Paddle. Four entries of the encoding
table are displayed on every tile of Paddle, leaving 1.5 tiles empty between
the end and the starting point of the loop (Figure 6.10b1). In the touch
condition (Figure 6.10b2), the loop is simulated, making it possible to scroll
in�nitely, similar to the physical condition. Di�erent encoding tables are used
for every word. Although words with the same length are used, di�erent letter
combinations require di�erent amounts of scrolling. We compensate for this
by generating encoding tables that requires the same amount of scrolling for
every condition. For this task, the task completion time is used as the main
measure of performance.

Lea�ng

For the lea�ng interaction, participants leaf through a book of 10 pages in which
facts about various topics are shown on every page (Figure 6.10c). Participants
leaf through the book and read the facts for 70 seconds. Afterwards, 4 facts
are presented, but some of the facts have their details changed. Participant
are asked if the fact is correct (distractor task) and have to estimate the page
number of the fact in the book (main task). For this task, the error rate
for estimating page numbers and the success rate (percentage) for detecting
correct facts was measured.

6.5.2 Study Procedure

We recruited 16 participants (2 female, mean age 25) from our university cam-
pus. All were right-handed. The study used a within subjects design. For
each of the three tasks, the physical and touch condition, were presented in
a counterbalanced order. Additionally, the task sets were switched over the
conditions to balance potential di�erences in task di�culty.

For every condition (physical, touch), the participant received instructions
about how to perform the task. For the peeking and scrolling task, participants
were instructed to complete the task as fast as possible. Since both tasks are
feasible with a very low error rate (con�rmed by the pilot studies) under all
conditions, a new task was given in the rare occasions when participants failed
to give the right answer. For the lea�ng task, we instructed participants to
focus on the distractor task (correctly identifying wrong facts). Participants
controlled a footswitch to start and end every task. Every condition started
with a series of practice trials until the participant understood the interaction
style and felt comfortable with the system. For the touch conditions, the

134 Paddle: Real-Time Physical Transformations

participant's pointing �nger was instrumented with markers to enable touch
interaction on Paddle.

After every condition, a modi�ed version of the ISO 9241-9 questionnaire
with dependent rating scale for testing input devices was �lled in, with only
a single fatigue category and an additional �intuitiveness� category. All inter-
actions were recorded on video. The average experiment completion time was
approximately one hour. After a participant completed the experiment, there
was an informal discussion during which the participant was asked to explain
his interaction preferences.

6.5.3 Hypotheses

We expect that peeking using touch requires participants to focus on both
the content in the peeking window and how the entire peeking window is
moving when it is opened or closed. When using physical peeking, on the other
hand, participants rely on tactile sensory feedback to interact with the peeking
window and thus better focus on the visual information that is presented (i.e.
our symbol comparison task). We therefore hypothesize:

H1 : Physical peeking is faster than peeking using touch.

We expect that physical scrolling helps users to build up spatial memory
and better uses sensory motor skills compared to touch. We therefore think
that for physical scrolling, participants will immediately grasp at elements
along the ring instead of scrolling through all elements, as is necessary with
touch. We therefore hypothesize:

H2 : Physical scrolling is faster than scrolling using touch.

Physical lea�ng with Paddle is a more expressive way to navigate through a
book compared to swipes using touch. We therefore expect that with physical
lea�ng, participants are more aware of the position of the current page in the
book at any time and are thus better at recalling the structure of this book.
We therefore hypothesize:

H3 : Physical lea�ng results in more accurate estimates of page numbers.

6.5.4 Results

Quantitative Results

We collected 384 data points for the peeking tasks, 384 data points for the
scrolling tasks and 512 data points for the lea�ng tasks. After removing error

6.5 User Study 1: Physical Controls vs Direct Touch 135

Figure 6.11: The results of study 1 comparing physical and touch for (a) peeking,
(b) scrolling, (c) lea�ng.

trials (respectively 3.1%, 2.1% and 0.2%) and outlier response times for the
peeking and scrolling task (respectively 1.6% and 1.6%), we were left with re-
spectively 366, 370 and 511 trials in this analysis. Trials were labeled as outliers
for each condition when exceeding the mean by three standard deviations.

For every task, we aggregated the trials of every participant, and ran a
repeated-measure ANOVA. For the peeking task, we found a signi�cant dif-
ference between physical and touch (13.9s vs. 16.5s, F1,15 = 5.75, p=0.03), as
shown in Figure 6.11a. This con�rms H1. Contrary to H2, we did not �nd a
signi�cant di�erence between the scrolling conditions (p=0.93) (Figure 6.11b).
As shown in Figure 6.11c, we found a signi�cant di�erence between physical
lea�ng and lea�ng using touch, with the physical condition resulting in 46%
more accurate page estimates (F1,15 =62.97, p<0.001). This con�rms H3. We
also analyzed that physically lea�ng through pages resulted in signi�cantly
fewer errors when participants were asked if the presented fact was correct
(73.3% vs. 57.4%, F1,15 = 25.79, p<0.001). Additionally, participants leafed
signi�cantly more in the physical condition (15.2 vs. 12.8 leafs, F1,15 = 7.26,
p=0.02).

Qualitative Results

The comparative ISO 9241-9 questionnaire con�rmed our quantitative results
for the peeking interaction (H1). Participants reported that they found phys-
ical peeking signi�cantly better on the scale of force, intuitiveness, accuracy,

136 Paddle: Real-Time Physical Transformations

speed, comfort, smoothness and overall operation. Physical peeking performed
equally well as peeking using touch on the scales of e�ort and fatigue. Some
noticeable comments during the interview also help to further explain our
quantitative results: �When using touch, I have the feeling that my eyes are
following my �nger unconsciously.�, �In the physical condition, you intuitively
know how far to open the peeking window to reveal all content. In the touch
condition, the peeking window can have any size.�, �In the physical condition,
the content does not move.�, �Touch requires better targeting as one needs to
stop at the border of the device to prevent losing track of the touch point.�

Similar to the quantitative data, there was no clear preference in interaction
style for scrolling (H2). However, participants agreed that physical scrolling
requires signi�cantly more e�ort than scrolling using touch. Contrary to H2,
�ve participants mentioned during the interview that they did not know how
many tiles to scroll with the physical ring to go to a speci�c letter. Two
of these participants commented that they were confused because multiple
items were displayed on a single tile. Four other participants mentioned that
their performance in the physical condition could have been in�uenced by the
latency of our system. This latency was much more noticeable when physically
scrolling through the list, because the device moved a lot more.

Contrary to the quantitative results for the lea�ng task (H3), participants
rated lea�ng using touch signi�cantly better on the scales of force, e�ort, speed,
comfort and smoothness. Physical lea�ng performed equally well as lea�ng us-
ing touch on the scales of intuitiveness, accuracy, overall operation and fatigue.
When participants were asked during the interview which interaction style they
preferred overall for the lea�ng task, the ratings of the questionnaires were
con�rmed, with 11 participants preferring touch, 3 preferring physical and 2
undecided. However, six of the participants who preferred touch, mentioned
that they would prefer physical lea�ng if the lea�ng mechanism was more com-
fortable. Many of these participants commented that when lea�ng physically,
the device was less comfortable to hold as pages have to �ip back from behind
in order to have a book with an unlimited number of pages. One participant
mentioned that he felt more con�dent about the page numbers he gave when
physically lea�ng through the book.

6.5.5 Study Discussion

Overall, hypotheses H1 and H3 were con�rmed. Our study clearly shows that
physicality provides bene�ts for lea�ng interactions. Participants could better
recall the structure and content when physically lea�ng through the book.

6.5 User Study 1: Physical Controls vs Direct Touch 137

Although we also measured a signi�cant bene�t for physical peeking com-
pared to touch, it remains unclear if the direction for opening the peeking
window in the touch condition played a signi�cant role in the e�ect that we
measured. As one participant correctly noticed, the direction in which the
peeking window had to be pulled out in the touch condition might have slowed
him down, because the end point of the dragging movement was near the bor-
der of the device, which introduces a speed-accuracy trade-o�, known as Fitts'
law. Additionally, our experiment did not con�rm our second hypothesis, in
that we did not measure a di�erence between physical scrolling and scrolling
using touch.

We identi�ed four factors that require further investigation in a second
experiment, in order get a deeper understanding of the bene�ts of physical
controls supported by Paddle. Three factors focus on scrolling, for which we
could not yet �nd any signi�cant di�erence. The last factor focuses on peeking,
for which we already found signi�cant di�erences.

1. Does the mapping of digital items to physical elements contribute to the
e�ciency of physical scrolling? We observed that displaying multiple
digital items (in our case 4 letters of the alphabet) on a single physi-
cal element (in our case a single tile of the physical ring) introduces a
mismatch between tactile and visual information and confused partic-
ipants, as they were not used to think in terms of groups of 4 items.
To investigate this, we will compare physical scrolling to scrolling using
touch with a list of 8 elements, one for every tile in the physical ring
(Figure 6.12b1-b2).

2. Does visual realism contribute to the e�ciency of physical scrolling? A
lack of visual realism in the physical scrolling condition, due to the la-
tency of our prototype, might have in�uenced the performance of the
physical scrolling condition more than the touch condition, as physical
scrolling requires more and faster movements of the device. To measure
this e�ect, we will compare a physical ring with 8 elements printed on
it, referred to as the paper prototype (Figure 6.12b3), to the condition
where 8 elements are projected on the ring (Figure 6.12b2).

3. Does the quality of scroll inertia contribute to the e�ciency of scrolling
using touch? Although inertia was enabled on the scroll list in the touch
condition, our prototype implementation could have in�uenced the per-
formance of scroll inertia, as we tracked the position of the �ngertip to
the surface of our device, which can slightly vary over di�erent hand/�n-
ger postures. To measure this e�ect, we will compare scrolling using

138 Paddle: Real-Time Physical Transformations

Figure 6.12: Our second study further investigates the factors contributing to the
e�ciency of physical controls supported by Paddle and touch interaction for peeking
and scrolling.

touch on Paddle (Figure 6.12b2) to scrolling using touch on a tablet on
which exactly the same list is displayed (Figure 6.12b4).

4. Does homing towards a target near the border of a device when opening a
peeking window, contribute to the e�ciency of peeking using touch? For
this, we will evaluate touch and physical peeking in another direction,
which eliminates precise targeting and similar to the previous experiment,
reduces the e�ects of occlusion by the hand to a minimum (Figure 6.12a).

6.6 User Study 2: Contributing Factors

To understand the factors contributing to the di�erences between physical and
touch conditions for both our peeking and scrolling interaction, we conducted
a second study. We evaluate the relative e�ect of the location of the target
position when opening a peeking window using touch by evaluating peeking
in another direction (Figure 6.12a). For the scrolling task, we investigate the

6.6 User Study 2: Contributing Factors 139

importance of mapping digital to physical items (Figure 6.12a-b), the poten-
tial e�ects of visual realism for the physical condition (Figure 6.12d) and scroll
inertia for the touch condition (Figure 6.12c).

6.6.1 Task Designs

For the peeking conditions, we used task sets similar to the ones used in our
�rst experiment, but we displayed them on di�erent regions of Paddle (Fig-
ure 6.12a). For the scrolling conditions, the task sets were slightly adapted,
as we now have lists consisting of only 8 elements (compared to 26 in the �rst
study). We therefore generated new look-up tables, which translate 8 ordered
numbers (0-7) to letters. The resulting word is nonexistent, which prevents
participants of giving the answer before looking up all the numbers. Partic-
ipants were also explicitly instructed to look up the numbers in the order in
which they were displayed. We also increased the number of items that partic-
ipants had to look up, from 4 in the previous study to 5, in order to encourage
more scrolling and compensate for the shorter look-up tables.

6.6.2 Study Procedure

We recruited 16 participants (4 female, mean age 26), 8 of which were randomly
chosen from our previous pool of participants in study 1. All were right-handed.
The study used a within subjects design. For the peeking task, the conditions
were fully counterbalanced. The four scrolling conditions were presented in a
counterbalanced order using a balanced Latin square. Additionally, the task
sets were counterbalanced over the conditions for every task, in order to balance
potential di�erences in task di�culty. The entire experiment lasted one hour
on average, after which there was an informal discussion with the participant.

6.6.3 Hypotheses

H4 : Physical peeking outperforms peeking using touch, independent of the
location of the peeking window.

H5 : Physical scrolling outperforms scrolling using touch when displaying
exactly one digital element on every tile.

H6 : Physical scrolling with the paper prototype outperforms physical scrolling
with Paddle using projection.

140 Paddle: Real-Time Physical Transformations

H7 : Scrolling on the tablet outperforms scrolling on Paddle using touch.

H8 : Physically scrolling with the paper prototype outperforms scrolling on
the tablet.

6.6.4 Results

Quantitative Results

We collected 384 data points for the peeking task and 768 data points for the
scrolling task. After removing error trials (respectively 3.6% and 2.6%) and
outliers (respectively 2.1% and 0.7%), we were left with 362 and 742 trials,
respectively. We analyzed the results using repeated measures ANOVA. All
post hoc comparisons used Bonferroni corrected con�dence intervals.

Consistent with the �ndings of our �rst study, we found a signi�cant dif-
ference between physical peeking and peeking using touch as shown in Fig-
ure 6.13a (13.4s vs. 16.4s, F1,15 = 5.45, p=0.03), con�rming H4.

Figure 6.13b shows the overall trend of our results for the scrolling tasks.
There was a signi�cant main e�ect (F3,45 = 50.5, p<0.001). Pairwise tests show
that participants were signi�cantly faster with physical scrolling than scrolling
using touch on Paddle (11% faster, p=0.02). Furthermore, physically scrolling
with the paper prototype outperformed physical scrolling with projection (20%
faster, p<0.001). Scrolling on the tablet was signi�cantly faster than scrolling
on Paddle using touch (22% faster, p<0.001). Finally, physically scrolling with
the paper prototype was signi�cantly faster than scrolling using touch on the
tablet (9% faster, p=0.01), con�rming H5-H8.

Qualitative Results

Although all participants agreed that physical scrolling was more tiring than
touch, 11 participants preferred physical scrolling with the paper prototype
and only 3 participants preferred the tablet (2 participants were undecided).
13 participants agreed that they could easily remember the position of elements
along the physical ring. Five participants even noticed that overshooting tar-
gets occurred more often on the tablet than when physically scrolling with the
paper prototype.

6.7 Findings and Design Recommendations 141

Figure 6.13: The results of study 2, investigating the factors contributing to the
di�erences between physical and touch for (a) peeking and (b) scrolling.

6.7 Findings and Design Recommendations

The results of our two studies show that physical controls supported by Pad-
dle have certain bene�ts compared to traditional direct touch interaction tech-
niques.

Starting with the peeking interaction technique, our �rst and second study
reveal that physical peeking is signi�cantly faster and subjectively preferred
compared to peeking using touch (H1+H4). We therefore conclude that physi-
cal peeking outperforms peeking using touch. Our results suggest that peeking
using touch requires users to focus on both the content in the peeking window
and how the window is moving. When using physical peeking, on the other
hand, users rely mostly on tactile feedback to interact with the peeking window
and can therefore better focus on the visual information presented in the task
at hand.

For the lea�ng interaction, the qualitative analysis of our �rst study shows
that physical lea�ng is a more tiring interaction compared to touch, but results
in an improved recall of the structure and content of a book (H3). Similar
results have been found in studies on paper vs. e-readers [Jabr 13]. Their
results were, however, motivated by the fact that paper books facilitate the
process of picturing content on pages, as real books provide implicit cues (e.g.
thickness) about where you are in the book. Our �nding suggests that the
physical lea�ng interaction itself is a large contributing factor to the bene�ts

142 Paddle: Real-Time Physical Transformations

one gets from interacting with real books. So in addition to all e�orts of making
e-readers look and feel like real paper [Watanabe 08, Wightman 11], Paddle
shows how certain bene�ts one experiences with real books can be brought to
devices using physical controls.

For the scrolling interactions, our �rst study indicates that physical scrolling
is more tiring than scrolling using touch. No other signi�cant di�erences be-
tween these input modalities were found (H2). Our second study, however,
shows that when displaying exactly one item of a list on every tile of the
physical ring, participants were signi�cantly faster with physical scrolling than
scrolling using touch (H5). In the physical scrolling condition, users could
locate elements very precisely and are thus able to directly grasp at elements
further in the ring compared to the touch condition, in which scrolling through
all elements is necessary. This suggests that users are better able to use their
sensory motor skills and build up spatial memory when scrolling physically.

Our second study also shows that visual realism plays an important role
when physically scrolling through lists. Physical scrolling with the paper pro-
totype turns out to be signi�cantly faster than both physical scrolling with
Paddle with projection (H6) and a traditional tablet with scroll inertia enabled
(H8). The latter result suggests that scrolling with future Paddle devices with
perfect visual �delity (i.e. with real displays) will result in faster acquisition
of elements compared to traditional lists on touch screens with scroll inertia.

6.7.1 Physical scrolling through longer lists

Our �rst and second study only show signi�cant bene�ts for physical scrolling
when mapping every item of a list to a single physical element of our ring
(i.e. same number of digital and physical items). It remains unclear how to
e�ciently support longer scrolling lists with Paddle. We therefore conduct
a smaller �nal study in which we compare physical scrolling through longer
lists using Paddle to scrolling through the same list on the tablet. The same
tasks are used as in the second study, but now the look-up tables are twice
as long. Instead of displaying multiple items of the scrolling list on a single
physical element at the same time, as we did in the �rst study, we now wrap the
scrolling list multiple times around the physical ring. We asked 8 participants
to perform both conditions in a counterbalanced order. Our analysis is based
on 185 valid trials.

Although our second study shows that scrolling using touch on the tablet
was signi�cantly faster than physically scrolling with projection, we did not
�nd a signi�cant di�erence between these two conditions when the list is twice

6.7 Findings and Design Recommendations 143

as long (p=0.79). These results suggest that participants gained more bene�ts
from physicality when the lists become longer. While users commented that
physical scrolling is more tiring with longer lists, analyzing our video recordings
clearly shows the dexterity that participants have when scrolling physically
through the long lists. Even though participants noticed the latency of our
system when physically scrolling using Paddle as in study 1 and 2, participants
knew almost exactly how many times to turn the ring to get to a speci�c item.
Our second study shows that visual realism is an important contributing factor
for the e�ciency of physical scrolling with Paddle. We therefore expect that
for longer scrolling lists, future Paddle devices with perfect visual �delity (i.e.
with real displays), will also outperform direct touch.

6.7.2 Design Recommendations

The �ndings from our studies suggest the following recommendations for the
design of digitally augmented physical controls:

• Optimize the physical manipulation to match the task at hand: Instead of
mapping interactions from the physical to the digital world, interactions
with well designed physical controls integrate feedback that is a natural
consequence of the action. Our study �ndings demonstrate that when
physical interactions are highly intuitive and require low conscious e�ort,
users better focus on the task at hand.

• Tactile information should correspond with visual content: When a physi-
cal control provides tactile guidance during interactions, this tactile infor-
mation should correspond with the visual information that is embodied.
The physical scrolling condition demonstrates that only if the tactile in-
formation corresponds with the digital content (one item on every time),
users bene�t from these tactile cues to process information. When the
tactile and visual content do not correspond, additional cognitive pro-
cessing is required to map the di�erent sources of information.

• Physical material should integrate high-�delity visual information: Phys-
ical controls often allow for fast interactions as tactile information can
be processed quickly. However, when the sensors to recognize the inter-
action or communicate feedback introduce errors and latency, users have
to perform additional cognitive steps to verify the content.

144 Paddle: Real-Time Physical Transformations

6.8 Discussion

Physical controls supported by Paddle di�er from traditional tangible con-
trols [Ishii 97, Fitzmaurice 95] in two ways: First, Paddle transforms to di�er-
ent physical controls over time. Multiple controls are therefore not available
at the same time. Instead of being inherently space-multiplexed, as tradi-
tional tangible systems [Fitzmaurice 95], interactions using Paddle's physical
controls are time-multiplexed. Secondly, Paddle makes input indistinguishable
from its graphical output, integrating them in a single space. In contrast,
traditional tangible controls often requires users to map interactions from the
physical to the digital world as physical controls are perceptually coupled to
digital content [Ullmer 00]. As such, physical controls supported by Paddle
provide inherent feedback, where feedback is a natural consequence of an ac-
tion [Djajadiningrat 02].

Besides Paddle's inherent strength to bring various physical controls into
a single mobile form factor, our user experiments investigate the di�erence be-
tween these controls and traditional direct touch interactions. Although these
experiments initially use quantitative measures, such as speed and success rate
as the main measures of performance, our �nal results revealed substantial dif-
ferences between the interaction styles we considered including. Notable results
include, able to better utilize sensory motor skills for the physical peeking, im-
proved recall of structure and content for the physical lea�ng interaction, and
improved abilities to use spatial memory for the physical scrolling interaction.

This work is also subject to two limitations. First, the transformation
model supported by Paddle is unknown to the user, making it challenging to
switch between form factors. Furthermore, users can always perform transfor-
mations that are not supported in a given context. These problems can be
alleviated by providing visual help cues [Bau 08, Vanacken 08] to show trans-
formation possibilities. Although our scenario (Figure 6.4a,e,g) demonstrates
this idea, more generic visualizations are needed in the future. Secondly, trans-
forming a device can be time consuming, especially when interactions with a
single form factor last for only a few seconds. In these situations, traditional
touch interaction on one of the �at shapes supported by Paddle can be used
at the expense of the bene�ts that the custom shape would provide. Alter-
natively, future Paddle interfaces can better support the training of users'
muscle memory to switch between shapes in less than a second after some
practice. We also see potential in integrating actuators, such as shape memory
alloys [Roudaut 13, Hawkes 10] in our design to ease or even automate trans-
formations. Roudaut et al. [Roudaut 16] recently presented an actuated hinge

6.9 Summary 145

mechanism that can turn along two adjacent sides, conform to our Paddle
mechanical design.

6.9 Summary

In this chapter, we showed how the physical layout of interfaces can adapt in
real-time (G3). More speci�cally, we explored techniques to embed materials
in interfaces that allow for fast transformations in their physical state (C1).
As such, a single physical form factor transforms to di�erent physical shapes.
We demonstrated this concept by prototyping one possible implementation in
the context of mobile devices, called Paddle. Engineering concepts used in the
design of Paddle are based on principles used in folding plate puzzles. Interfaces
like Paddle trade the space-multiplexed input nature of traditional physical
controls for �exibility. As such, they combine the �exibility of traditional direct
touch interaction concepts with the qualities of real world controls. A usage
scenario demonstrated various novel interaction concepts that are enabled by
Paddle. Besides this, we provided a comprehensive interaction design space for
transformable devices. The results of our two user studies show that although
interactions with physical controls are more tiring, as compared to traditional
touch interactions, they still provide some inherent bene�ts, such as being able
to better utilize sensory motor skills, improved abilities to use spatial memory,
and improved comprehension of structure and content. Although Paddle is still
a prototype, we believe that our �ndings informs and encourages the design
of future physical interfaces which adapt their physical layout, in real-time, to
the task at hand.

146 Paddle: Real-Time Physical Transformations

Chapter 7

Discussion and Future Work

Each of the previous chapters o�ers a discussion of the presented concepts and
systems. This chapter discusses aspects that bestrides these topics and covers
future work that arises from this dissertation. We start by generalizing the
research concepts at the intersection of digital fabrication and transformable
interfaces. Next, we provide a deeper discussion on the di�erent groups of users
that bene�t from our systems. Finally, we elaborate on the user-experience
challenges that come with computationally generated solutions and discuss
how physical user interfaces could seamlessly integrate in environments in the
future.

7.1 Digital Fabrication and Transformable Interfaces

Digital fabrication systems employ robotic machinery, such as a multi-axis
moving platform or robotic arm to add or subtract material permanently from
the workpiece (Section 2.2). In contrast, transformable interfaces employ the
user's muscles (Section 2.5.1) or integrate actuators inside the material (Sec-
tion 2.5.2) to make temporary changes to the physical artifact. While many
transformable interfaces change the shape of objects faster as compared to dig-
ital fabrication systems, the latter class has a much higher resolution to pre-
cisely shape materials. However in many ways, both concepts work towards a
similar goal of applying computational power to the physical world. This trend
towards a shared goal is exempli�ed by research in digital fabrication that fo-
cus on increasing the speed of fabrication machinery [Mueller 14b, Peng 16].

148 Discussion and Future Work

Figure 7.1: Claytronics1: creating and adapting physical objects on the �y.

Researchers in the �eld of transformable interfaces, on the other hand, often
contribute new systems with an increased shape resolution [Follmer 13]. Fig-
ure 7.1 shows the Claytronics project1 that envisions smart materials, called
programmable matter, to exist in the future. With this kind of material it be-
comes possible to author the form-factor of physical objects on the �y. These
kind of smart materials are often considered to be the ultimate form of trans-
formable interfaces. However, the technology shown in Figure 7.1 could also
be considered a very fast 3D printer.

Besides overlap in research goals, both tracks of research also in�uence
each other. Recently, digital fabrication technologies are used to realize new
forms of shape-change. HapticPrint [Torres 15] shows how to 3D print internal
structures of objects that only deform along one axis. Metamaterials [Ion 16]
advanced these techniques to realize 3D printed functional mechanisms, such
as hinges, that do not require assembly.

As material science did not yet advance to the point of realizing pro-
grammable matter, this dissertation considers both digital fabrication as well
as transformable interfaces to allow end-users to take control over physical in-
terfaces. PaperPulse (Chapter 3) and RetroFab (Chapter 4) use digital fabrica-
tion technologies to allow end-users to either create new or repurpose existing
physical interfaces. Paddle (Chapter 6) on the other hand, employs strategies
from transformable interfaces to adapt physical interfaces in real-time.

1http://www.cs.cmu.edu/ claytronics

7.2 Target Audiences 149

7.2 Target Audiences

The systems developed in this dissertation target people who are interested in
making physical interfaces but do not have a background in electronics, pro-
gramming, or design. This audience partially overlaps with the Do-It-Yourself
(DIY) and Maker community, although a number of people in these com-
munities already gained technical experience through workshops, tutorials, or
courses [Qi 14, Mellis 13]. However, even for those users, our user studies re-
vealed (Sections 3.8 and 4.8) that the presented systems speed-up and ease the
process of making high-�delity physical interfaces.

We consider the systems presented in this dissertation as �enabling tech-
nologies�, as they enable new groups of users to realize interactive physical
interfaces. There are however aspects that are traditionally considered while
designing interfaces that go beyond making a deployable interactive system,
foremost, the usability of the physical interface. The design environments in
this dissertation do not encourage users to make an aesthetic or easy-to-use
design. Instead, the environments rely on the users' instincts to make decent
design decisions. Additional research is needed to realize algorithms that auto-
matically suggest design decisions based on models and heuristics [Nielsen 94].
Similar automated usability approaches have been explored in the context of
website design [Todi 16].

Although STEM (science, technology, engineering, and mathematics) ed-
ucation is oftentimes the main motivation to facilitate aspects in the pro-
cess of making things e.g. LittleBits [Bdeir 12], the systems presented in this
work do not educate users. Our systems in contrast, automate many aspects
that normally require extensive training, including, complex manual material
transformations, electronics, programming, and 2D and 3D design. Learning
from automatically generated solutions is an interesting direction for future
research, as users immediately start with a working solution and learn details
later (bottom-up learning).

Interaction designers, such as product designers or boardgame designers
could also bene�t from PaperPulse (Chapter 3) or RetroFab (Chapter 4)
while prototyping high-�delity interactive interfaces. During the design pro-
cess, professional designers often start with low-�delity prototypes, such as
sketches on paper, in software tools [Lin 00], or using low-�delity physical
toolkits [Hudson 06]. The current version of our design environments have no
explicit support to automatically convert those early prototypes into Paper-
Pulse or RetroFab designs. Nevertheless, users can bene�t from the insights
and lessons learned during earlier prototyping stages.

150 Discussion and Future Work

7.3 User-Experience of Computationally Generated

Solutions

Computationally generated solutions, such as guided physical transformations
with Paddle (Chapter 6) or generated circuit designs in PaperPulse (Chapter 3)
or RetroFab (Chapter 4) allow for realizing complex solutions without requiring
prior knowledge. On the �ipside, when solutions fail as a result of, for example,
short circuits or human errors, it is hard for the user to recover the system. In
the context of the Paddle phone, this issue is resolved by providing help cues to
backtrack the system to the initial physical con�guration. In the PaperPulse
and RetroFab design environment, the computationally generated circuit has
various potential points of failure (e.g. disconnectivities in the circuit or failure
of electronic components). More research is needed to assist users in locating
and resolving these problems.

Some users also appreciate making design changes during the physical as-
sembly process, especially when the artistic qualities of artifacts are important.
Devendorf et. al [Devendorf 15] demonstrates how users can remain in control
while the machine suggest a computationally generated solution. In Paper-
Pulse and RetroFab, in contrast, all decisions are made while designing the
artifact in the software environment. When making changes during the assem-
bly phase, the correct working of the �nal physical interface is not guaranteed.

7.4 Seamlessly Integrated Physical Interfaces

Some of the physical user interfaces realized in this dissertation can be consid-
ered as bulky, such as the projector setup required for Paddle (Chapter 6),
the 3D printed structure of Retro�t interfaces (Chapter 4), or the micro-
controller integrated in PaperPulse designs (Chapter 3). The size of these
setups can be reduced signi�cantly by reducing the size of electronic com-
ponents or the overall number of components in the system. Future ver-
sions of these systems can seamlessly integrate thin-�lm display [Olberding 14],
thin-�lm batteries [Bates 00], or thin-�lm microcontroller [Myny 12]. Alterna-
tively, the number of components in a system can be reduced by sharing elec-
tronic sensing components among multiple passive widgets as demonstrated in
Sauron [Savage 13] and Touch&Activate [Ono 13].

Chapter 8

Conclusion

In this chapter, we discuss how we have answered the research goals and chal-
lenges that we have postulated in the introduction of this dissertation. Fig-
ure 8.1 summarizes how the research challenges, research goals, and contribu-
tions link to each other.

8.1 Addressing the Research Challenges

In Chapter 1, �ve research challenges were formulated to better support novices
in author physical interfaces. In the following, we re�ect on the various con-
cepts presented in this dissertation which address these research challenges.

(C1) Availability of machinery and knowledge required to author
physical materials
This work investigated a number of techniques and DIY machinery that
make it possible for non-experts to author physical materials. PaperPulse
(Chapter 3), uses a regular inkjet printer �lled with conductive ink and
a toolkit of components that enable novices to manufacture advanced
electronic circuits on �exible substrates. This traditionally requires pro-
fessional machinery as discussed in Section 2.1. RetroFab (Chapter 4),
shows how add-ons for appliances are created with conventional 3D print-
ers. Paddle (Chapter 6), demonstrates how transformable materials can
be used to allow novices to adapt the shape of physical interfaces in
real-time.

152 Conclusion

Figure 8.1: Linking the research challenges and goals to the contributions of this
dissertation: Horizontal items de�ne the research challenges (C1-C5). Vertical items
de�ne the contributions. The research goals (G1-G3) are at the top. The intersections
summarize how the respective contributions resolve the research challenges.

(C2) Technical expertise and spatial reasoning skills required for
making designs
The quality of physical artifacts realized with digital fabrication machin-
ery, highly depend on the quality of the digital input model. Designing
detailed models traditionally requires high levels of expertise in di�erent
domains (e.g. mechanical and electrical engineering). The PaperPulse
(Chapter 3) design environment automatically generates a multi-layered
designs from a visual layout on a 2D canvas. RetroFab (Chapter 4)
contributes an algorithm to generate retro�t 3D structures from an an-
notated 3D scan of existing physical interfaces. Additionally, a redesign
of the interface is generated that the user can adjust. This work therefore
contributes new concepts and algorithms for computationally generated
design.

(C3) Electrical engineering knowledge required
Many physical interfaces support interactivity by integrating electrical
components and circuits. Making electronic circuits however, requires
a lot of expertise. PaperPulse (Chapter 3) and RetroFab (Chapter 4)

8.2 Addressing the Research Goals 153

support non-experts in making electronic circuits in three ways: (1) Au-
tomatic generation of an electronic system that connects every compo-
nent to appropriate GPIO-pins on the microcontroller. (2) A toolkit of
electrical components that are easy to assemble and interconnect. (3)
A custom-generated tutorial that guides users through the assembly of
the circuit. Using these techniques, our systems allow users without a
technical background to make arbitrarily complex electronic systems.

(C4) Advanced sensor-based programming knowledge required
Programming sensor-based systems traditionally requires users to follow
extensive tutorials, workshop, or courses. Pulsation 1.0 (Section 3.5)
and 2.0 (Chapter 5) provide a visual environment for specifying sensor-
based logic behavior. With Pulsation, �rst-time users compose basic
logic by simply interconnecting electronic components. For advanced
users, Pulsation o�ers �ne-grained control over parameters, optimized
for expressing temporal behavior.

(C5) A wide diversity of heterogeneous tools and systems available
PaperPulse (Chapter 3) and RetroFab (Chapter 4) software environ-
ments streamline the design and fabrication process to make physical
interfaces. This process traditionally requires using advanced tools in
electronics, programming, and graphical design. Besides, artifacts cre-
ated in multiple heterogeneous software environments oftentimes have
strong dependencies and require users to switch between tools frequently.
The PaperPulse and RetroFab software environments optimize the work-
�ow for realizing speci�c types of artifacts (i.e. thin-�lm interactive sub-
strates and retro�t interfaces) and support the user from the initial idea
until the �nal implementation.

8.2 Addressing the Research Goals

Addressing the challenges discussed in the previous section, leads to the re-
search goals that were postulated in the introduction of this dissertation. In
the following, we discuss how the presented systems and concepts address these
research goals.

(G1) Establish integrated software-hardware solutions that enable
users without a technical background to make new interactive
physical interfaces by authoring the form-factor and behavior.

154 Conclusion

The PaperPulse software-hardware environment (Chapter 3) allows users
without a technical background to design and fabricate thin-�lm �exible
interfaces. In PaperPulse, users specify the visual design on a canvas
and provide high-level logic speci�cations using the integrated Pulsation
logic speci�cation paradigm (Chapter 5). Using these speci�cations, Pa-
perPulse generates a multi-layered circuit design, microcontroller code,
as well as assembly instructions. Our example designs and use cases
demonstrate the versatility of this approach. Additionally, user evalua-
tions con�rmed that PaperPulse enables non-experts to make new inter-
active physical interfaces.

(G2) Establish integrated software-hardware solutions that enable
users without a technical background to author the form-factor
and behavior of existing interactive physical interfaces.

The RetroFab software-hardware environment (Chapter 4) allows users
without a technical background to make retro�t interfaces that change
the form-factor and behavior of existing physical interfaces. From an an-
notated 3D scan and high-level lgoic speci�cations in Pulsation (Chap-
ter 5), RetroFab generates a 3D retro�t structure, microcontroller code,
as well as assembly instructions. Our example designs and use cases
demonstrate the versatility of our approach. Additionally, a user study
con�rmed that RetroFab enables non-experts to adapt existing physical
interfaces.

(G3) Establish integrated software-hardware solutions that enable
users without a technical background to adapt the form-factor
and resulting behavior of interactive physical devices in real-
time.

The Paddle phone (Chapter 6), demonstrates how transformable mate-
rials can be used in interfaces to realize physical controls that change
their shape and functionality in real-time. Compared to the digital fab-
rication techniques covered in this dissertation, shaping an artifact using
transformable materials is signi�cantly faster and thus allows for real-
time transitions. A usage scenario demonstrates the feasibility of our
approach during a phone call. A broader overview of interaction scenar-
ios are covered in an extensive design space.

Appendices

AppendixA

Pulsation 2.0 Grammar Instance

Listing A.1: Generated Pulsation grammar for an advanced code slot mechanism.

1 private PulsRadioButton m_radioButton;
2 private PulsLed m_ledCodeCorrect;
3 private PulsBuzzer m_buzzer;
4

5 private PulsLed m_progressLED1;
6 private PulsLed m_progressLED2;
7 private PulsLed m_progressLED3;
8 private PulsLed m_progressLED4;
9 private PulsLed m_progressLED5;

10 private PulsLed m_progressLED6;
11

12 private InputPatternBase m_inputPattern;
13

14 private IndependentOutputPatternBase m_ledCodeCompleted;
15 private OutputPatternRepeater m_incorrectAction;
16 private OutputActionBase m_restoreLedTrigger;
17 private AssignValueOfVariable m_mappingProgress;
18

19 protected override void initProg()
20 {
21 // All conditions
22 OrderedInputCollectionStrict codePatternCollection =
23 new OrderedInputCollectionStrict()
24 {
25 EventPatterns = new InputPatternBase[]
26 {

158 Pulsation 2.0 Grammar Instance

27 new LatchOperator(
28 new VarEqualsConstant(m_radioButton.getVarID(),
29 1)
30),
31 new SimultaneousInputCollection()
32 {
33 EventPatterns = new InputPatternBase[]
34 {
35 new LatchOperator(
36 new VarEqualsConstant(m_radioButton.getVarID(),
37 8)
38),
39 new LatchOperator(
40 new VarEqualsConstant(m_radioButton.getVarID(),
41 9)
42)
43 }
44 }
45 }
46 };
47

48 UnOrderedInputCollection excludeEvents
49 = new UnOrderedInputCollection(UnOrderedInputCollectionType.OR)

// Disjunction
50 {
51 EventPatterns = new InputPatternBase[]
52 {
53 new InputPatternSingleAction(
54 new VarEqualsConstant(m_radioButton.getVarID(), 0)
55),
56 new InputPatternSingleAction(
57 new VarInBetweenConstants(m_radioButton.getVarID(), 2, 7)
58)
59 } // Excluding Buttons 0 and 2-7
60 };
61 codePatternCollection.setExcludePattern(excludeEvents);
62

63 ConditionRepeater repeater =
64 new ConditionRepeater(codePatternCollection, true);
65 // Reset on error in child: TRUE
66 repeater.EndCondition = new InputPatternSingleAction(
67 new VarEqualsConstant(repeater.getIterationVarID(), 2)
68); // 2 repetitions
69

70 TimeToCompleteCondition timeCondition
71 = new TimeToCompleteCondition(repeater, true);
72 // Reset on error in child: TRUE
73 timeCondition.EndCondition = new InputPatternSingleAction(

159

74 new VarSmallerThanConstant(timeCondition.getTimeVarID(), 100)
75); // 30 milliseconds
76

77 // Measuring the progress throughout the conditions
78 ProgressProperty progress = new ProgressProperty();
79 ConditionPropertyProxy proxy
80 = new ConditionPropertyProxy(timeCondition, progress);
81

82 m_inputPattern = proxy;
83 m_inputPattern.onActivatedEvent +=
84 new EventHandler(onInputPatternActivated);
85 m_inputPattern.onDeactivatedEvent +=
86 new EventHandler(onInputPatternDeactivated);
87 addCondition(m_inputPattern);
88

89 InputPatternBase timeResetCondition =
90 new VarGreaterThanConstant(timeCondition.getTimeVarID(), 100);
91 timeResetCondition.onActivatedEvent +=
92 timeResetConditionActivated;
93 addCondition(timeResetCondition);
94

95 // All actions
96 OutputPatternCollectionCteTiming incorrectAction
97 = new OutputPatternCollectionCteTiming()
98 {
99 Actions = new IndependentOutputPatternBase[]

100 {
101 new AssignConstant(
102 m_buzzer.getVarID(),
103 PulsBuzzer.ONSTATE
104),
105 new AssignConstant(
106 m_buzzer.getVarID(),
107 PulsBuzzer.OFFSTATE
108),
109 new DummyAction() // delay before repeat
110 }
111 };
112

113 incorrectAction.setDelay(incorrectAction.Actions[1], 0.5f);
114 incorrectAction.setDelay(incorrectAction.Actions[2], 1.0f);
115 m_incorrectAction = new OutputPatternRepeater(incorrectAction);
116 addAction(m_incorrectAction);
117

118 m_ledCodeCompleted = new AssignConstant(
119 m_ledCodeCorrect.getVarID(),
120 PulsLed.ONSTATE
121);

160 Pulsation 2.0 Grammar Instance

122 addAction(m_ledCodeCompleted);
123

124 m_restoreLedTrigger = new RestoreVariable(
125 m_ledCodeCorrect.getVarID()
126);
127 addAction(m_restoreLedTrigger);
128

129 //code to track progress
130 OutputPatternCollection progressLEDs
131 = new OutputPatternCollection()
132 {
133 Actions = new IndependentOutputPatternBase[]
134 {
135 new AssignConstant(
136 m_progressLED1.getVarID(),
137 PulsLed.ONSTATE
138),
139 new AssignConstant(
140 m_progressLED2.getVarID(),
141 PulsLed.ONSTATE
142),
143 new AssignConstant(
144 m_progressLED3.getVarID(),
145 PulsLed.ONSTATE
146),
147 new AssignConstant(
148 m_progressLED4.getVarID(),
149 PulsLed.ONSTATE
150),
151 new AssignConstant(
152 m_progressLED5.getVarID(),
153 PulsLed.ONSTATE
154),
155 new AssignConstant(
156 m_progressLED6.getVarID(),
157 PulsLed.ONSTATE
158)
159 }
160 };
161

162 OutputProgressRegulator progressRegulator
163 = new OutputProgressRegulator(progressLEDs);
164 addAction(progressRegulator);
165

166 progressRegulator.addUndoAction(
167 progressLEDs.Actions[0],
168 new AssignConstant(m_progressLED1.getVarID(), PulsLed.OFFSTATE)
169);

161

170 progressRegulator.addUndoAction(
171 progressLEDs.Actions[1],
172 new AssignConstant(m_progressLED2.getVarID(), PulsLed.OFFSTATE)
173);
174 progressRegulator.addUndoAction(
175 progressLEDs.Actions[2],
176 new AssignConstant(m_progressLED3.getVarID(), PulsLed.OFFSTATE)
177);
178 progressRegulator.addUndoAction(
179 progressLEDs.Actions[3],
180 new AssignConstant(m_progressLED4.getVarID(), PulsLed.OFFSTATE)
181);
182 progressRegulator.addUndoAction(
183 progressLEDs.Actions[4],
184 new AssignConstant(m_progressLED5.getVarID(), PulsLed.OFFSTATE)
185);
186 progressRegulator.addUndoAction(
187 progressLEDs.Actions[5],
188 new AssignConstant(m_progressLED6.getVarID(), PulsLed.OFFSTATE)
189);
190

191 m_mappingProgress = new AssignValueOfVariable(
192 progressRegulator.getProgressVarID(),
193 progress.ProgressVarID
194);
195 addAction(m_mappingProgress);
196

197

198 protected override void onLoop()
199 {
200 m_mappingProgress.execute();
201 }
202

203 private void timeResetConditionActivated(
204 object sender,
205 EventArgs e
206)
207 {
208 m_codeInputPattern.reset();
209 m_incorrectAction.execute();
210 }
211

212 private void onInputPatternActivated(object sender, EventArgs e)
213 {
214 m_codeInputPattern.reset();
215 m_restoreLedTrigger.initRestorePoint();
216 m_ledCodeCompleted.execute();
217 }

162 Pulsation 2.0 Grammar Instance

218

219 private void onInputPatternDeactivated(object sender, EventArgs e)
220 {
221 m_codeInputPattern.reset();
222 m_ledCodeCompleted.pause();
223 m_restoreLedTrigger.execute();
224 }
225 }

AppendixB

Nederlandstalige Samenvatting

Visuele gebruikersinterfaces liggen aan de basis van de meeste computersyste-
men. Dagdagelijks maken we gebruik van de zogenaamde WIMP (windows,
icons, menus, pointer) interactie stijl op desktop computers of aanraakgevoelige
schermen op mobiele toestellen. Dergelijke systemen waarbij de visuele ge-
bruikersinterface centraal staat zijn zeer populair doordat ze voor vele taken
gebruikt kunnen worden zoals bijvoorbeeld het opstellen van documenten, com-
municatie, opzoeken van informatie etc. Nieuwe tools en technieken maken het
zelfs mogelijk voor mensen zonder technische kennis om visuele gebruikersin-
terfaces te personaliseren zoals bijvoorbeeld het gebruik van �lters voor het
bewerken van foto's, interactieve pro�elen op sociale media, en gebruiksvrien-
delijke beheersystemen om websites of enquêtes te maken. In tegenstelling
tot visuele gebruikersinterfaces zijn fysieke gebruikersinterfaces veel moeilijker
om te maken en aan te passen doordat in deze systemen inhoudelijke compo-
nenten, zoals elektronische componenten, rechtstreeks verwerkt worden in het
materiaal. Hierdoor is het personaliseren van fysieke interfaces veel moeilijker
dan visuele gebruikersinterfaces. Voorbeelden van fysieke interfaces zijn tra-
ditionele huishoudelijke toestellen, muziek instrumenten, en meetapparatuur.
Dergelijke systemen hebben vaak een zeer speci�eke functionaliteit die geïn-
tegreerd is in de fysieke vorm van het toestel. Hierdoor vergt het maken of
aanpassen van dergelijke fysieke interfaces kennis van materialen, elektronica,
design, alsook programmeren.

In deze doctoraatsthesis worden nieuwe tools en technieken onderzocht die
het mogelijk maken voor mensen zonder een technische achtergrond om fysieke

164 Nederlandstalige Samenvatting

interfaces te maken. Hierbij starten we in dit doctoraat met het onderzoeken
van machines voor digitale fabricatie. Digitale fabricatie machines zoals 3D
printers, laser cutters en inkjet printers met geleidende inkt, zijn zeer geschikt
voor het maken van gepersonaliseerde fysieke interfaces doordat de productie
kan verlopen in kleine volumes aan een lage prijs. Alhoewel deze machines
aangestuurd worden vanaf een computer en er dus geen handmatige operaties
nodig zijn, vergt het nog zeer veel kennis om vooraf een accuraat digitaal
model op te bouwen in software omgevingen. Allereerst moet er een fysieke
vorm in 3D of gra�sch materiaal gemodelleerd worden in een virtuele omgeving.
Daarnaast moeten er elektronische schema's gemaakt worden voor realiseren
van een interactieve interface. Tenslotte moeten de elektronische componenten
geprogrammeerd worden. Enkel mensen met een technische achtergrond zijn
vertrouwd met deze technieken.

In deze thesis wordt er allereerst PaperPulse besproken, een design en fab-
ricatie omgeving die gebruikers zonder enige technische kennis ondersteunt om
fysieke interfaces te maken op dunne substraten. PaperPulse bestaat uit een
software alsook hardware componenten. Gebruikers starten in de software
omgeving met het ontwerpen van een fysieke interface door afbeeldingen en
elektronische componenten op een canvas toe te voegen. De functionaliteit
van deze componenten wordt beschreven in een hoog-niveau programmeer-
taal, genaamd Pulsation. Op basis van het visuele design op de canvas en de
hoog-niveau instructies, genereerd PaperPulse een elektronisch circuit, laag-
niveau programma instructies, en een handleiding. De handleiding beschrijft
stap-voor-stap het proces om de laag-niveau instructies in te laden op de micro-
controller en het proces om het elektronisch circuit te printen op een substraat
m.b.v. een printer gevuld met geleidende inkt. Daarnaast voorziet PaperPulse
een uitgebreide set van elektronische componenten die gemakkelijk bevestigd
kunnen worden op dunne substraten. Na het doorlopen van deze stappen
hebben gebruikers een persoonlijke fysieke interface gerealiseerd.

Om het mogelijk te maken voor gebruikers zonder enige technische kennis
om bestaande fysieke toestellen aan te passen en te herprogrammering, be-
spreken we RetroFab. Het doel van RetroFab is het realiseren van een onder-
steunende constructie die over een bestaand fysiek toestel (e.g. huishoudelijk
toestel) geplaatst kan worden. Deze constructie integreert sensoren en actu-
atoren om het bestaande toestel te bedienen. Bovenop deze ondersteunende
constructie kan dan een nieuwe gebruikersinterface van het bestaande toes-
tel geïntegreerd worden. Gelijkaardig aan PaperPulse ondersteunt RetroFab
de gebruiker in het realiseren van een dergelijke ondersteunende constructie.
RetroFab ondersteunt ook een set van actuatoren en basis elektronica com-

165

ponenten voor het aansturen van veel gebruikte componenten in huishoud-
toestellen.

In zowel PaperPulse als RetroFab speci�ëren gebruikers zonder program-
meerkennis logica met behulp van een visuele programmeertaal genaamd Pul-
sation. Pulsation is geoptimaliseerd voor het de�niëren van logica in sensor-
gebaseerde systemen. Hiervoor biedt Pulsation grammatica die voornamelijk
focust op temporele relaties. Leken speci�ëren logica in deze grammatica door
het tekenen van visuele links tussen elektronische componenten op een canvas.
Geavanceerde constructies zijn beschikbaar voor gebruikers met meer ervaring.
De resulterende Pulsation grammatica wordt uitgevoerd door een zogenaamde
Pulsation vertolker. Pulsation is compatibel met zowel desktop computers
alsook microcontrollers.

Tenslotte bekijken we in deze doctoraatsthesis hoe fysieke interfaces dy-
namische veranderingen kunnen toelaten tijdens hun gebruik. In traditionele
visuele gebruikersinterfaces is het vaak mogelijk om de lay-out van de omgeving
aan te passen met een simpele actie. Voor fysieke interfaces is het een grote
uitdaging om de fysieke vorm tijdens het gebruik dynamisch aan te passen.
Daarom bespreken we Paddle, een vervormbare fysieke interface die een aan-
tal fysieke besturingselementen ondersteund. Elk besturingselement heeft een
andere vorm en ondersteunt unieke interactiemogelijkheden. Gebruikers zon-
der technische achtergrond krijgen simpele instructies om de interface snel
te vervormen tussen deze verschillende besturingselementen. Paddle wordt
bestudeerd in de context van mobiele toestellen gezien het zeker in mobiele
situaties onmogelijk is om wijzigingen aan te brengen aan de fysieke vorm van
een toestel met behulp van andere gereedschappen.

166 Nederlandstalige Samenvatting

Bibliography

[Abelson 74] Hal Abelson, Nat Goodman & Lee Rudolph. Logo manual.
1974.

[Agrawal 15] Harshit Agrawal, Udayan Umapathi, Robert Kovacs, Jo-
hannes Frohnhofen, Hsiang-Ting Chen, Stefanie Mueller
& Patrick Baudisch. Protopiper: Physically Sketching
Room-Sized Objects at Actual Scale. In Proc. UIST '15,
pages 427�436. ACM, 2015.

[Ahmaniemi 14] Teemu T Ahmaniemi, Johan Kildal & Merja Haveri. What
is a device bend gesture really good for? In Proc. CHI '14,
pages 3503�3512. ACM, 2014.

[Alexander 12] Jason Alexander, Andrés Lucero & Sriram Subramanian.
Tilt displays: designing display surfaces with multi-axis
tilting and actuation. In Proc. MobileHCI '12, pages 161�
170. ACM, 2012.

[Anabuki 07] Mahoro Anabuki & Hiroshi Ishii. AR-Jig: a handheld
tangible user interface for modi�cation of 3D digital form
via 2D physical curve. In Proc. ISMAR '07, pages 55�66.
IEEE, 2007.

[Annett 15] Michelle Annett, Tovi Grossman, Daniel Wigdor &
George Fitzmaurice. MoveableMaker: Facilitating the De-
sign, Generation, and Assembly of Moveable Papercraft.
In Proc. UIST '15, pages 565�574. ACM, 2015.

[Apitz 04] Georg Apitz & François Guimbretière. CrossY: A
Crossing-based Drawing Application. In Proc. UIST '04,
pages 3�12. ACM, 2004.

168 BIBLIOGRAPHY

[Ash 11] Jordan Ash, Monica Babes, Gal Cohen, Sameen Jalal,
Sam Lichtenberg, Michael Littman, Vukosi Marivate,
Phillip Quiza, Blase Ur & Emily Zhang. Scratchable
devices: user-friendly programming for household appli-
ances. In Proc. HCII '11, pages 137�146. Springer, 2011.

[Ballagas 03] Rafael Ballagas, Meredith Ringel, Maureen Stone & Jan
Borchers. iStu�: A Physical User Interface Toolkit for
Ubiquitous Computing Environments. In Proc. CHI '03,
pages 537�544. ACM, 2003.

[Barnes 02] David J Barnes. Teaching introductory Java through
LEGO MINDSTORMS models. In Proc. SIGCSE Bul-
letin, volume 34, pages 147�151. ACM, 2002.

[Barr 99] Michael Barr. How programmable logic works. Embedded
Systems Programming, pages 75�84, 1999.

[Bates 00] JB Bates, NJ Dudney, B Neudecker, A Ueda & CD Evans.
Thin-�lm lithium and lithium-ion batteries. Solid State
Ionics, vol. 135, no. 1, pages 33�45, 2000.

[Bau 08] Olivier Bau & Wendy E. Mackay. OctoPocus: A Dy-
namic Guide for Learning Gesture-based Command Sets.
In Proc. UIST '08, pages 37�46. ACM, 2008.

[Bdeir 12] Ayah Bdeir & Paul Rothman. Electronics As Material:
LittleBits. In Proc. TEI '12, pages 371�374. ACM, 2012.

[Block 08] Florian Block, Michael Haller, Hans Gellersen, Carl
Gutwin & Mark Billinghurst. VoodooSketch: Extending
Interactive Surfaces with Adaptable Interface Palettes. In
Proc. TEI '08, pages 55�58, 2008.

[Buechley 08] Leah Buechley, Mike Eisenberg, Jaime Catchen & Ali
Crockett. The LilyPad Arduino: Using Computational
Textiles to Investigate Engagement, Aesthetics, and Di-
versity in Computer Science Education. In Proc. CHI '08,
pages 423�432, 2008.

[Burstyn 15a] Jesse Burstyn, Nicholas Fellion, Paul Strohmeier & Roel
Vertegaal. PrintPut: Resistive and Capacitive Input Wid-

BIBLIOGRAPHY 169

gets for Interactive 3D Prints. In Proc. HCI '15, pages
332�339. Springer, 2015.

[Burstyn 15b] Jesse Burstyn, Paul Strohmeier & Roel Vertegaal. Dis-
playSkin: Exploring Pose-Aware Displays on a Flexible
Electrophoretic Wristband. In Proc. TEI '15, pages 165�
172. ACM, 2015.

[Buxton 86] W. Buxton & B. Myers. A Study in Two-handed Input.
In Proc. CHI '86, pages 321�326. ACM, 1986.

[Carter 99] D. A. Carter & J. Diaz. The elements of pop-up: A pop-
up book for aspiring paper engineers. Little Simon, 1999.

[Chen 15] Xiang'Anthony' Chen, Stelian Coros, Jennifer Manko� &
Scott E Hudson. Encore: 3D printed augmentation of
everyday objects with printed-over, a�xed and interlocked
attachments. In Proc. UIST '15, pages 73�82. ACM, 2015.

[Chikofsky 90] Elliot J Chikofsky, James H Crosset al. Reverse engineer-
ing and design recovery: A taxonomy. Software, IEEE,
vol. 7, no. 1, pages 13�17, 1990.

[Coelho 09] Marcelo Coelho, Lyndl Hall, Joanna Berzowska & Pattie
Maes. Pulp-based Computing: A Framework for Building
Computers out of Paper. In Proc. CHI EA '09, pages
3527�3528. ACM, 2009.

[Colella 01] Vanessa Stevens Colella, Eric Klopfer & Mitchel Resnick.
Adventures in modeling: Exploring complex, dynamic
systems with starlogo. Teachers College Press, 2001.

[Conway 00] Matthew Conway, Steve Audia, Tommy Burnette, Dennis
Cosgrove & Kevin Christiansen. Alice: lessons learned
from building a 3D system for novices. In Proc. CHI '00,
pages 486�493. ACM, 2000.

[Daliri 16] Farshad Daliri & Audrey Girouard. Visual Feedforward
Guides for Performing Bend Gestures on Deformable Pro-
totypes. In Proc. GI '16, 2016.

[Davido� 11] Scott Davido�, Nicolas Villar, Alex S Taylor & Shahram
Izadi. Mechanical hijacking: how robots can accelerate

170 BIBLIOGRAPHY

UbiComp deployments. In Proc. Ubicomp '11, pages 267�
270. ACM, 2011.

[Devendorf 15] Laura Devendorf & Kimiko Ryokai. Being the Machine:
Recon�guring Agency and Control in Hybrid Fabrication.
In Proc. CHI '15, pages 2477�2486. ACM, 2015.

[Devendorf 16] Laura Devendorf, Joanne Lo, Noura Howell, Jung Lin Lee,
Nan-Wei Gong, M. Emre Karagozler, Shiho Fukuhara,
Ivan Poupyrev, Eric Paulos & Kimiko Ryokai. "I Don'T
Want to Wear a Screen": Probing Perceptions of and Pos-
sibilities for Dynamic Displays on Clothing. In Proc. CHI
'16, pages 6028�6039. ACM, 2016.

[Dey 04] Anind K. Dey, Ra�ay Hamid, Chris Beckmann, Ian Li &
Daniel Hsu. A CAPpella: Programming by Demonstration
of Context-aware Applications. In Proc. CHI '04, pages
33�40. ACM, 2004.

[Dijkstra 11] Rob Dijkstra, Christopher Perez & Roel Vertegaal. Eval-
uating e�ects of structural holds on pointing and dragging
performance with �exible displays. In Proc. CHI '11, pages
1293�1302. ACM, 2011.

[Dixon 10] Morgan Dixon & James Fogarty. Prefab: implementing
advanced behaviors using pixel-based reverse engineering
of interface structure. In Proc. CHI '10, pages 1525�1534,
2010.

[Djajadiningrat 02] Tom Djajadiningrat, Kees Overbeeke & Stephan
Wensveen. But how, Donald, tell us how?: on the creation
of meaning in interaction design through feedforward and
inherent feedback. In Proc. DIS '02, pages 285�291. ACM,
2002.

[Erwin 00] Ben Erwin, Martha Cyr & Chris Rogers. LEGO en-
gineer and ROBOLAB: Teaching engineering with Lab-
VIEW from kindergarten to graduate school. International
Journal of Engineering Education, vol. 16, no. 3, pages
181�192, 2000.

BIBLIOGRAPHY 171

[Everett 57] Robert R Everett, CA Zraket & HD Benington. SAGE:
A data-processing system for air defense. In Papers and
discussions presented at the December 9-13, 1957, eastern
joint computer conference: Computers with deadlines to
meet, pages 148�155, 1957.

[Fitzmaurice 95] George W. Fitzmaurice, Hiroshi Ishii & William A. S.
Buxton. Bricks: laying the foundations for graspable user
interfaces. In Proc. CHI '95, pages 442�449. ACM, 1995.

[Follmer 13] Sean Follmer, Daniel Leithinger, Alex Olwal, Akimitsu
Hogge & Hiroshi Ishii. inFORM: Dynamic Physical Af-
fordances and Constraints Through Shape and Object Ac-
tuation. In Proc. UIST '13, pages 417�426. ACM, 2013.

[Fourney 12] Adam Fourney &Michael Terry. PICL: Portable In-circuit
Learner. In Proc. UIST '12, pages 569�578. ACM, 2012.

[Gallant 08] David T. Gallant, Andrew G. Seniuk & Roel Vertegaal.
Towards more paper-like input: �exible input devices for
foldable interaction styles. In Proc. UIST '08, pages 283�
286. ACM, 2008.

[Gannon 15] Madeline Gannon, Tovi Grossman & George Fitzmaurice.
Tactum: A Skin-Centric Approach to Digital Design and
Fabrication. In Proc. CHI '15, pages 1779�1788. ACM,
2015.

[Gannon 16] Madeline Gannon, Tovi Grossman & George Fitzmaurice.
ExoSkin: On-Body Fabrication. In Proc. CHI '16, pages
5996�6007. ACM, 2016.

[Girouard 15] Audrey Girouard, Jessica Lo, Md Riyadh, Farshad Daliri,
Alexander Keith Eady & Jerome Pasquero. One-handed
bend interactions with deformable smartphones. In Proc.
CHI '15, pages 1509�1518. ACM, 2015.

[Goldstine 46] Herman H Goldstine & Adele Goldstine. The electronic
numerical integrator and computer (ENIAC). Mathemat-
ical Tables and Other Aids to Computation, vol. 2, no. 15,
pages 97�110, 1946.

172 BIBLIOGRAPHY

[Gomes 13] Antonio Gomes, Andrea Nesbitt & Roel Vertegaal. More-
Phone: a study of actuated shape deformations for �exi-
ble thin-�lm smartphone noti�cations. In Proc. CHI '13,
pages 583�592. ACM, 2013.

[Gong 11] Nan-Wei Gong, Steve Hodges & Joseph A Paradiso.
Leveraging conductive inkjet technology to build a scalable
and versatile surface for ubiquitous sensing. In Proc. Ubi-
comp '11, pages 45�54. ACM, 2011.

[Gong 14] Nan-Wei Gong, Jürgen Steimle, Simon Olberding, Steve
Hodges, Nicholas Edward Gillian, Yoshihiro Kawahara &
Joseph A Paradiso. PrintSense: a versatile sensing tech-
nique to support multimodal �exible surface interaction.
In Proc. CHI '14, pages 1407�1410. ACM, 2014.

[Gorbet 98] Matthew G. Gorbet, Maggie Orth & Hiroshi Ishii. Trian-
gles: tangible interface for manipulation and exploration
of digital information topography. In Proc. CHI '98, pages
49�56. ACM, 1998.

[Gotsch 16] Daniel Gotsch, Xujing Zhang, Jesse Burstyn & Roel
Vertegaal. HoloFlex: A Flexible Holographic Smartphone
with Bend Input. In Proc. CHI EA '16, pages 3675�3678.
ACM, 2016.

[Greenberg 01] Saul Greenberg & Chester Fitchett. Phidgets: Easy Devel-
opment of Physical Interfaces Through Physical Widgets.
In Proc. UIST '01, pages 209�218. ACM, 2001.

[Groeger 16] Daniel Groeger, Elena Chong Loo & Jürgen Steimle. Hot-
Flex: Post-print Customization of 3D Prints Using Em-
bedded State Change. In Proc. CHI '16, pages 420�432.
ACM, 2016.

[Grossman 10] Tovi Grossman & George Fitzmaurice. ToolClips: An In-
vestigation of Contextual Video Assistance for Function-
ality Understanding. In CHI '10, pages 1515�1524. ACM,
2010.

[Hancock 09] Mark Hancock, Otmar Hilliges, Christopher Collins, Do-
minikus Baur & Sheelagh Carpendale. Exploring tangible

BIBLIOGRAPHY 173

and direct touch interfaces for manipulating 2D and 3D
information on a digital table. In Proc. ITS '09, pages
77�84. ACM, 2009.

[Hartmann 06] Björn Hartmann, Scott R. Klemmer, Michael Bernstein,
Leith Abdulla, Brandon Burr, Avi Robinson-Mosher &
Jennifer Gee. Re�ective Physical Prototyping Through In-
tegrated Design, Test, and Analysis. In Proc. UIST '06,
pages 299�308. ACM, 2006.

[Hartmann 07] Björn Hartmann, Leith Abdulla, Manas Mittal &
Scott R. Klemmer. Authoring Sensor-based Interactions
by Demonstration with Direct Manipulation and Pattern
Recognition. In Proc. CHI '07, pages 145�154. ACM, 2007.

[Harvey 14] Brian Harvey, Daniel D Garcia, Ti�any Barnes, Nathaniel
Titterton, Omoju Miller, Dan Armendariz, Jon McK-
insey, Zachary Machardy, Eugene Lemon, Sean Mor-
riset al. Snap!(build your own blocks). In Proc. of the
45th ACM technical symposium on Computer science ed-
ucation, pages 749�749. ACM, 2014.

[Hawkes 10] E. Hawkes, B. An, N. M. Benbernou, H. Tanaka, S. Kim,
E.D Demaine, D. Rus & R. J. Wood. Programmable mat-
ter by folding. Proc. NAS, vol. 107, no. 28, pages 12441�
12445, 2010.

[Hemmert 10] Fabian Hemmert, Susann Hamann, Matthias Löwe, Jose-
�ne Zeipelt & Gesche Joost. Shape-changing mobiles: ta-
pering in two-dimensional deformational displays in mo-
bile phones. In Proc. CHI EA '10, pages 3075�3080. ACM,
2010.

[Hinckley 09] Ken Hinckley, Morgan Dixon, Raman Sarin, Francois
Guimbretiere & Ravin Balakrishnan. Codex: a dual screen
tablet computer. In Proc. CHI '09, pages 1933�1942. ACM,
2009.

[Hodges 13] Steve Hodges, James Scott, Sue Sentance, Colin Miller,
Nicolas Villar, Scarlet Schwiderski-Grosche, Kerry Ham-
mil & Steven Johnston. .NET Gadgeteer: A New Platform

174 BIBLIOGRAPHY

for K-12 Computer Science Education. In Proc. SIGCSE
'13, pages 391�396. ACM, 2013.

[Hodges 14] Steve Hodges, Nicolas Villar, Nicholas Chen, Tushar
Chugh, Jie Qi, Diana Nowacka & Yoshihiro Kawahara.
Circuit Stickers: Peel-and-stick Construction of Interac-
tive Electronic Prototypes. In Proc. CHI '14, pages 1743�
1746. ACM, 2014.

[Holman 05] David Holman, Roel Vertegaal, Mark Altosaar, Nikolaus
Troje & Derek Johns. Paper windows: interaction tech-
niques for digital paper. In Proc. CHI '05, pages 591�599.
ACM, 2005.

[Holman 11] David Holman & Roel Vertegaal. TactileTape: Low-cost
Touch Sensing on Curved Surfaces. In Proc. UIST '11
Adjunct, pages 17�18. ACM, 2011.

[Hook 14] Jonathan Hook, Thomas Nappey, Steve Hodges, Peter
Wright & Patrick Olivier. Making 3D printed objects in-
teractive using wireless accelerometers. In Proc. CHI EA
'14, pages 1435�1440. ACM, 2014.

[Hudson 06] Scott E. Hudson & Jennifer Manko�. Rapid Construc-
tion of Functioning Physical Interfaces from Cardboard,
Thumbtacks, Tin Foil and Masking Tape. In Proc. UIST
'06, pages 289�298. ACM, 2006.

[Igarashi 07] Takeo Igarashi, Satoshi Matsuoka & Hidehiko Tanaka.
Teddy: a sketching interface for 3D freeform design. In
Proc. Siggraph '07, page 21. ACM, 2007.

[Ion 16] A. Ion, J. Frohnhofen, M. Alistar, L. Wall, J. Ko-
vacs R. andLindsay, P. Lopes, H.-T. Chen & P. Baud-
isch. Metamaterial Mechanisms. In Proc. UIST '16. ACM,
2016.

[Ishiguro 14] Yoshio Ishiguro & Ivan Poupyrev. 3D printed interactive
speakers. In Proc. CHI '14, pages 1733�1742. ACM, 2014.

[Ishii 97] Hiroshi Ishii & Brygg Ullmer. Tangible bits: towards
seamless interfaces between people, bits and atoms. In
Proc. CHI '97, pages 234�241. ACM, 1997.

BIBLIOGRAPHY 175

[Jabr 13] Ferris Jabr. Why the Brain Prefers Paper. Scienti�c
American, vol. 309, no. 5, pages 48�53, 2013.

[Jawitz 97] Martin W Jawitz. Printed circuit board materials hand-
book. McGraw Hill Professional, 1997.

[Johnson 89] Je� Johnson, Teresa L Roberts, William Verplank,
David C Smith, Charles H Irby, Marian Beard & Kevin
Mackey. The xerox star: A retrospective. Computer,
vol. 22, no. 9, pages 11�26, 1989.

[Jones 16] Michael D. Jones, Kevin Seppi & Dan R. Olsen. What You
Sculpt is What You Get: Modeling Physical Interactive
Devices with Clay and 3D Printed Widgets. In Proc. CHI
'16, pages 876�886. ACM, 2016.

[Karagozler 13] Mustafa Emre Karagozler, Ivan Poupyrev, Gary K. Fed-
der & Yuri Suzuki. Paper Generators: Harvesting Energy
from Touching, Rubbing and Sliding. In Proc. UIST '13,
pages 23�30. ACM, 2013.

[Kawahara 13] Yoshihiro Kawahara, Steve Hodges, Benjamin S. Cook,
Cheng Zhang & Gregory D. Abowd. Instant Inkjet Cir-
cuits: Lab-based Inkjet Printing to Support Rapid Proto-
typing of UbiComp Devices. In Proc. UbiComp '13, pages
363�372. ACM, 2013.

[Kelleher 05] Caitlin Kelleher & Randy Pausch. Lowering the Barri-
ers to Programming: A Taxonomy of Programming Envi-
ronments and Languages for Novice Programmers. ACM
Comput. Surv., vol. 37, no. 2, pages 83�137, June 2005.

[Khalilbeigi 11] Mohammadreza Khalilbeigi, Roman Lissermann, Max
Mühlhäuser & Jürgen Steimle. Xpaaand: interaction tech-
niques for rollable displays. In Proc. CHI '11, pages 2729�
2732. ACM, 2011.

[Khalilbeigi 12] Mohammadreza Khalilbeigi, Roman Lissermann, Wolf-
gang Kleine & Jürgen Steimle. FoldMe: interacting with
double-sided foldable displays. In Proc. TEI '12, pages
33�40. ACM, 2012.

176 BIBLIOGRAPHY

[Kildal 12] Johan Kildal & Graham Wilson. Feeling it: the roles of
sti�ness, deformation range and feedback in the control of
deformable ui. In Proc. ICMI '12, pages 393�400. ACM,
2012.

[Kildal 13] Johan Kildal, Andrés Lucero & Marion Boberg. Twist-
ing Touch: Combining Deformation and Touch As Input
Within the Same Interaction Cycle on Handheld Devices.
In Proc. MobileHCI '13, pages 237�246, 2013.

[Kim 07] Seung Han Kim & Jae Wook Jeon. Programming LEGO
Mindstorms NXT with visual programming. In Control,
Automation and Systems, 2007. ICCAS'07. International
Conference on, pages 2468�2472. IEEE, 2007.

[Kirsh 94] David Kirsh & Paul Maglio. On distinguishing epistemic
from pragmatic action. Cognitive science, vol. 18, no. 4,
pages 513�549, 1994.

[Kramer 11] Rebecca K Kramer, Carmel Majidi & Robert J Wood.
Wearable tactile keypad with stretchable arti�cial skin. In
Proc. ICRA '11, pages 1103�1107. IEEE, 2011.

[Lahey 11] Byron Lahey, Audrey Girouard, Winslow Burleson & Roel
Vertegaal. PaperPhone: understanding the use of bend
gestures in mobile devices with �exible electronic paper
displays. In Proc. CHI '11, pages 1303�1312. ACM, 2011.

[Lau 11] Manfred Lau, Akira Ohgawara, Jun Mitani & Takeo
Igarashi. Converting 3D furniture models to fabricat-
able parts and connectors. In Proc. SIGGRAPH '11, vol-
ume 30, page 85. ACM, 2011.

[Lee 04] Johnny C. Lee, Daniel Avrahami, Scott E. Hudson, Jodi
Forlizzi, Paul H. Dietz & Darren Leigh. The Calder
Toolkit: Wired and Wireless Components for Rapidly Pro-
totyping Interactive Devices. In Proc. DIS '04, pages 167�
175. ACM, 2004.

[Lee 08] Johnny C. Lee, Scott E. Hudson & Edward Tse. Foldable
interactive displays. In Proc. UIST '08, pages 287�290.
ACM, 2008.

BIBLIOGRAPHY 177

[Lee 10] Sang-Su Lee, Sohyun Kim, Bopil Jin, Eunji Choi, Boa
Kim, Xu Jia, Daeeop Kim & Kun-pyo Lee. How users
manipulate deformable displays as input devices. In Proc.
CHI '10, pages 1647�1656. ACM, 2010.

[Le�ar 14] Meagan Le�ar & Audrey Girouard. Navigating in 3D
space with a handheld �exible device. Entertainment Com-
puting, vol. 5, no. 4, pages 205�209, 2014.

[Li 16] Hanchuan Li, Eric Brockmeyer, Elizabeth J. Carter, Josh
Fromm, Scott E. Hudson, Shwetak N. Patel & Alanson
Sample. PaperID: A Technique for Drawing Functional
Battery-Free Wireless Interfaces on Paper. In Proc. CHI
'16, pages 5885�5896. ACM, 2016.

[Lin 00] James Lin, Mark W. Newman, Jason I. Hong & James A.
Landay. DENIM: Finding a Tighter Fit Between Tools
and Practice for Web Site Design. In Proc. CHI '00, pages
510�517. ACM, 2000.

[Lyons 12] Kent Lyons, David Nguyen, Daniel Ashbrook & Sean
White. Facet: a multi-segment wrist worn system. In
Proc. UIST '12, pages 123�130. ACM, 2012.

[Lysecky 09] Susan Lysecky & Frank Vahid. Enabling Nonexpert Con-
struction of Basic Sensor-based Systems. ACM Trans-
actions on Human-Computer Interaction, vol. 16, no. 1,
pages 1:1�1:28, April 2009.

[Maqsood 14] Sana Maqsood, Sonia Chiasson & Audrey Girouard. Bend
Passwords: using gestures to authenticate on �exible de-
vices. pages 1�28. Springer, 2014.

[Mellis 13] David A. Mellis, Sam Jacoby, Leah Buechley, Hannah
Perner-Wilson & Jie Qi. Microcontrollers As Material:
Crafting Circuits with Paper, Conductive Ink, Electronic
Components, and an "Untoolkit". In Proc. TEI '13, pages
83�90. ACM, 2013.

[Merrill 07] David Merrill, Jeevan Kalanithi & Pattie Maes. Siftables:
Towards Sensor Network User Interfaces. In Proc. TEI
'07, pages 75�78. ACM, 2007.

178 BIBLIOGRAPHY

[Michelitsch 04] Georg Michelitsch, Jason Williams, Martin Osen, Beatriz
Jimenez & Stefan Rapp. Haptic chameleon: a new con-
cept of shape-changing user interface controls with force
feedback. In Proc. CHI EA '04, pages 1305�1308. ACM,
2004.

[Millner 11] Amon Millner & Edward Baa�. Modkit: blending and ex-
tending approachable platforms for creating computer pro-
grams and interactive objects. In Proc. IDC '11, pages
250�253. ACM, 2011.

[Mori 07] Yuki Mori & Takeo Igarashi. Plushie: an interactive de-
sign system for plush toys. In Proc. TOG '07, volume 26,
page 45. ACM, 2007.

[Mueller 12] Stefanie Mueller, Pedro Lopes & Patrick Baudisch. Inter-
active construction: interactive fabrication of functional
mechanical devices. In Proc. UIST '12, pages 599�606.
ACM, 2012.

[Mueller 13] Stefanie Mueller, Bastian Kruck & Patrick Baudisch.
LaserOrigami: laser-cutting 3D objects. In Proc. CHI '13,
pages 2585�2592. ACM, 2013.

[Mueller 14a] Stefanie Mueller, Sangha Im, Sera�ma Gurevich, Alexan-
der Teibrich, Lisa P�sterer, François Guimbretière &
Patrick Baudisch. WirePrint: 3D printed previews for
fast prototyping. In Proc. UIST '14, pages 273�280. ACM,
2014.

[Mueller 14b] Stefanie Mueller, Tobias Mohr, Kerstin Guenther, Jo-
hannes Frohnhofen & Patrick Baudisch. faBrickation: fast
3D printing of functional objects by integrating construc-
tion kit building blocks. In Proc. CHI '14, pages 3827�3834.
ACM, 2014.

[Mugellini 07] Elena Mugellini, Elisa Rubegni, Sandro Gerardi &
Omar Abou Khaled. Using Personal Objects As Tangi-
ble Interfaces for Memory Recollection and Sharing. In
Proc. TEI '07, pages 231�238. ACM, 2007.

BIBLIOGRAPHY 179

[Myny 12] Kris Myny, Erik van Veenendaal, Gerwin H Gelinck, Jan
Genoe, Wim Dehaene & Paul Heremans. An 8-bit, 40-
instructions-per-second organic microprocessor on plastic
foil. IEEE Journal of Solid-State Circuits, vol. 47, no. 1,
pages 284�291, 2012.

[Nielsen 94] Jakob Nielsen. Enhancing the Explanatory Power of Us-
ability Heuristics. In Proc. CHI '94, pages 152�158. ACM,
1994.

[Olberding 13] Simon Olberding, Nan-Wei Gong, John Tiab, Joseph A.
Paradiso & Jürgen Steimle. A Cuttable Multi-touch Sen-
sor. In Proc. UIST '13, pages 245�254. ACM, 2013.

[Olberding 14] Simon Olberding, Michael Wessely & Jürgen Steimle.
PrintScreen: Fabricating Highly Customizable Thin-�lm
Touch-displays. In Proc. UIST '14, pages 281�290. ACM,
2014.

[Olberding 15] Simon Olberding, Sergio Soto Ortega, Klaus Hildebrandt
& Jürgen Steimle. Foldio: Digital Fabrication of Inter-
active and Shape-Changing Objects With Foldable Printed
Electronics. In Proc. UIST '15, pages 223�232. ACM,
2015.

[Olsen 07] Dan R. Olsen Jr. Evaluating User Interface Systems Re-
search. In Proc. UIST '07, pages 251�258. ACM, 2007.

[Ono 13] Makoto Ono, Buntarou Shizuki & Jiro Tanaka. Touch
& activate: adding interactivity to existing objects using
active acoustic sensing. In Proc. UIST '13, pages 31�40,
2013.

[Parzer 16] Patrick Parzer, Kathrin Probst, Teo Babic, Chris-
tian Rendl, Anita Vogl, Alex Olwal & Michael Haller.
FlexTiles: A Flexible, Stretchable, Formable, Pressure-
Sensitive, Tactile Input Sensor. In Proc. CHI EA '16,
pages 3754�3757. ACM, 2016.

[Pedersen 14] Esben W Pedersen, Sriram Subramanian & Kasper Horn-
bæk. Is my phone alive?: a large-scale study of shape
change in handheld devices using videos. In Proc. CHI
'14, pages 2579�2588. ACM, ACM, 2014.

180 BIBLIOGRAPHY

[Peng 16] Huaishu Peng, Rundong Wu, Steve Marschner & François
Guimbretière. On-The-Fly Print: Incremental Printing
While Modelling. In Proc. CHI '16, pages 887�896. ACM,
2016.

[Piper 02] Ben Piper, Carlo Ratti & Hiroshi Ishii. Illuminating clay:
a 3-D tangible interface for landscape analysis. In Proc.
CHI '02, pages 355�362. ACM, 2002.

[Post 00] E Rehmi Post, Maggie Orth, PR Russo & Neil Gershen-
feld. E-broidery: Design and fabrication of textile-based
computing. IBM Systems journal, vol. 39, no. 3.4, pages
840�860, 2000.

[Poupyrev 16] Ivan Poupyrev, Nan-Wei Gong, Shiho Fukuhara,
Mustafa Emre Karagozler, Carsten Schwesig & Karen E.
Robinson. Project Jacquard: Interactive Digital Textiles
at Scale. In Proc. CHI '16, pages 4216�4227. ACM, 2016.

[Puckette 96] Miller Pucketteet al. Pure Data: another integrated com-
puter music environment. The second intercollege com-
puter music concerts, pages 37�41, 1996.

[Qi 10] Jie Qi & Leah Buechley. Electronic Popables: Explor-
ing Paper-based Computing Through an Interactive Pop-
up Book. In Proc. TEI '10, pages 121�128. ACM, 2010.

[Qi 14] Jie Qi & Leah Buechley. Sketching in Circuits: Design-
ing and Building Electronics on Paper. In Proc. CHI '14,
pages 1713�1722. ACM, 2014.

[Ra�e 04] Hayes Solos Ra�e, Amanda J. Parkes & Hiroshi Ishii.
Topobo: a constructive assembly system with kinetic mem-
ory. In Proc. CHI '04, pages 647�654. ACM, 2004.

[Ramakers 12] Raf Ramakers, Davy Vanacken, Kris Luyten, Karin Con-
inx & Johannes Schöning. Carpus: A Non-intrusive User
Identi�cation Technique for Interactive Surfaces. In Proc.
UIST '12, pages 35�44. ACM, 2012.

[Ramakers 13] Raf Ramakers, Kris Luyten & Johannes Schöning. Learn-
ing from 3D puzzles to inform future interactions with de-

BIBLIOGRAPHY 181

formable mobile interfaces. In Proc. Workshop on Dis-
plays Take New Shape: An Agenda for Interactive Sur-
faces CHI '13, 2013.

[Ramakers 14] Raf Ramakers, Johannes Schöning & Kris Luyten. Paddle:
Highly Deformable Mobile Devices with Physical Controls.
In Proc. CHI '14, pages 2569�2578. ACM, 2014.

[Ramakers 15a] Raf Ramakers. Recon�guring and Fabricating Special-
Purpose Tangible Controls. In Adj. Proc. UIST '15, pages
5�8. ACM, 2015.

[Ramakers 15b] Raf Ramakers, Kashyap Todi & Kris Luyten. An End-
User Development Approach for Designers to create In-
teractive Paper. In Proc. Workshop on End User Devel-
opment in the Internet of Things Era CHI '15, 2015.

[Ramakers 15c] Raf Ramakers, Kashyap Todi & Kris Luyten. PaperPulse:
An Integrated Approach for Embedding Electronics in Pa-
per Designs. In Proc. CHI '15, pages 2457�2466. ACM,
2015.

[Ramakers 15d] Raf Ramakers, Kashyap Todi & Kris Luyten. PaperPulse:
An Integrated Approach for Embedding Electronics in Pa-
per Designs. In Proc. SIGGRAPH 2015: Studio, pages
3:1�3:1. ACM, 2015.

[Ramakers 15e] Raf Ramakers, Kashyap Todi & Kris Luyten. PaperPulse:
An Integrated Approach to Fabricating Interactive Paper.
In Proc. CHI '15, pages 267�270. ACM, 2015.

[Ramakers 16] Raf Ramakers, Fraser Anderson, Tovi Grossman & George
Fitzmaurice. RetroFab: A Design Tool for Retro�tting
Physical Interfaces Using Actuators, Sensors and 3D
Printing. In Proc. CHI '16, pages 409�419. ACM, 2016.

[Rasmussen 12] Majken K. Rasmussen, Esben W. Pedersen, Marianne G.
Petersen & Kasper Hornbaek. Shape-changing interfaces:
a review of the design space and open research questions.
In Proc. CHI '12, pages 735�744. ACM, 2012.

[Rendl 12] Christian Rendl, Patrick Greindl, Michael Haller, Martin
Zirkl, Barbara Stadlober & Paul Hartmann. PyzoFlex:

182 BIBLIOGRAPHY

printed piezoelectric pressure sensing foil. In Proc. UIST
'12, pages 509�518. ACM, 2012.

[Rendl 14] Christian Rendl, David Kim, Sean Fanello, Patrick
Parzer, Christoph Rhemann, Jonathan Taylor, Mar-
tin Zirkl, Gregor Scheipl, Thomas Rothländer, Michael
Halleret al. FlexSense: a transparent self-sensing de-
formable surface. In Proc. UIST '14, pages 129�138. ACM,
2014.

[Rendl 16] Christian Rendl, David Kim, Patrick Parzer, Sean
Fanello, Martin Zirkl, Gregor Scheipl, Michael Haller &
Shahram Izadi. FlexCase: Enhancing Mobile Interaction
with a Flexible Sensing and Display Cover. In Proc. CHI
'16, pages 5138�5150. ACM, 2016.

[Resnick 09] Mitchel Resnick, John Maloney, Andrés Monroy-
Hernández, Natalie Rusk, Evelyn Eastmond, Karen Bren-
nan, Amon Millner, Eric Rosenbaum, Jay Silver, Brian
Silvermanet al. Scratch: programming for all. Communi-
cations of the ACM, vol. 52, no. 11, pages 60�67, 2009.

[Roudaut 13] Anne Roudaut, Abhijit Karnik, Markus Löchtefeld & Sri-
ram Subramanian. Morphees: toward high "shape resolu-
tion" in self-actuated �exible mobile devices. In Proc. CHI
'13, pages 593�602. ACM, 2013.

[Roudaut 16] Anne Roudaut, Diana Krusteva, M McCoy, A Karnik,
Karthik Ramani & Sriram Subramanian. Cubimorph: de-
signing modular interactive devices. In Proc. ICRA '16,
pages 3339�3345. IEEE, 2016.

[Rudeck 12] Frederik Rudeck & Patrick Baudisch. Rock-paper-�bers:
bringing physical a�ordance to mobile touch devices. In
Proc. CHI '12, pages 1929�1932. ACM, 2012.

[Saul 10] Greg Saul, Cheng Xu & Mark D. Gross. Interactive Paper
Devices: End-user Design & Fabrication. In Proc. TEI
'10, pages 205�212. ACM, 2010.

[Saul 11] Greg Saul, Manfred Lau, Jun Mitani & Takeo Igarashi.
SketchChair: an all-in-one chair design system for end
users. In Proc. TEI '11, pages 73�80. ACM, 2011.

BIBLIOGRAPHY 183

[Savage 12] Valkyrie Savage, Xiaohan Zhang & Björn Hartmann. Mi-
das: Fabricating Custom Capacitive Touch Sensors to
Prototype Interactive Objects. In Proc. UIST '12, pages
579�588. ACM, 2012.

[Savage 13] Valkyrie Savage, Colin Chang & Björn Hartmann. Sauron:
embedded single-camera sensing of printed physical user
interfaces. In Proc. UIST '13, pages 447�456. ACM, 2013.

[Savage 14] Valkyrie Savage, Ryan Schmidt, Tovi Grossman, George
Fitzmaurice & Björn Hartmann. A series of Tubes:
Adding Interactivity to 3D Prints Using Internal Pipes.
In Proc. UIST '14, pages 3�12. ACM, 2014.

[Savage 15] Valkyrie Savage, Sean Follmer, Jingyi Li & Björn Hart-
mann. Makers' Marks: Physical Markup for Designing
and Fabricating Functional Objects. In Proc. UIST '15,
pages 103�108. ACM, 2015.

[Schmidt 88] Richard A Schmidt & Tim Lee. Motor control and learn-
ing, 5e. Human kinetics, 1988.

[Schmidt 10] Ryan Schmidt & Karan Singh. Meshmixer: An Interface
for Rapid Mesh Composition. In Proc. SIGGRAPH '10
Talks, pages 6:1�6:1. ACM, 2010.

[Schmidt 14] Dominik Schmidt, Raf Ramakers, Esben W. Pedersen,
Johannes Jasper, Sven Köhler, Aileen Pohl, Hannes
Rantzsch, Andreas Rau, Patrick Schmidt, Christoph
Sterz, Yanina Yurchenko & Patrick Baudisch. Kickables:
Tangibles for Feet. In Proc. CHI '14. ACM, 2014.

[Schwesig 04] Carsten Schwesig, Ivan Poupyrev & Eijiro Mori. Gummi:
a bendable computer. In Proc. CHI '04, pages 263�270.
ACM, 2004.

[Shorter 14] Michael Shorter, Jon Rogers & John McGhee. Enhancing
Everyday Paper Interactions with Paper Circuits. In Proc.
DIS '14, pages 39�42. ACM, 2014.

[Song 06] Hyunyoung Song, François Guimbretière, Chang Hu &
Hod Lipson. ModelCraft: capturing freehand annotations

184 BIBLIOGRAPHY

and edits on physical 3D models. In Proc. UIST '06, pages
13�22. ACM, 2006.

[Spielberg 16] Andrew Spielberg, Alanson Sample, Scott E. Hudson,
Jennifer Manko� & James McCann. RapID: A Frame-
work for Fabricating Low-Latency Interactive Objects with
RFID Tags. In Proc. CHI '16, pages 5897�5908. ACM,
2016.

[Steimle 13] Jürgen Steimle, Andreas Jordt & Pattie Maes. Flexpad:
highly �exible bending interactions for projected handheld
displays. In Proc. CHI '13, pages 237�246. ACM, 2013.

[Strohmeier 16] Paul Strohmeier, Jesse Burstyn, Juan Pablo Carrascal,
Vincent Levesque & Roel Vertegaal. ReFlex: A Flexible
Smartphone with Active Haptic Feedback for Bend Input.
In Proc. TEI '16, pages 185�192. ACM, 2016.

[Sugiura 12] Yuta Sugiura, Masahiko Inami & Takeo Igarashi. A thin
stretchable interface for tangential force measurement. In
Proc. UIST '12, pages 529�536. ACM, 2012.

[Sutherland 64] Ivan E Sutherland. Sketch pad a man-machine graphical
communication system. In Proc. of the SHARE design
automation workshop, pages 6�329, 1964.

[Tarun 11] Aneesh P Tarun, Byron Lahey, Audrey Girouard,
Winslow Burleson & Roel Vertegaal. Snaplet: using body
shape to inform function in mobile �exible display devices.
In Proc. CHI EA '11, pages 329�334. ACM, 2011.

[Tarun 13] Aneesh P. Tarun, Peng Wang, Audrey Girouard, Paul
Strohmeier, Derek Reilly & Roel Vertegaal. PaperTab:
an electronic paper computer with multiple large �exible
electrophoretic displays. In Proc. CHI EA '13, pages 3131�
3134. ACM, 2013.

[Teibrich 15] Alexander Teibrich, Stefanie Mueller, François Guim-
bretière, Robert Kovacs, Stefan Neubert & Patrick Baud-
isch. Patching Physical Objects. In Proc. UIST ' 15, pages
83�91. ACM, 2015.

BIBLIOGRAPHY 185

[Terrenghi 08] Lucia Terrenghi, David Kirk, Hendrik Richter, Sebastian
Krämer, Otmar Hilliges & Andreas Butz. Physical han-
dles at the interactive surface: exploring tangibility and
its bene�ts. In Proc. AVI '08, pages 138�145. ACM, 2008.

[Todi 16] Kashyap Todi, Daryl Weir & Antti Oulasvirta. Sketch-
plore: Sketch and Explore Layout Designs with an Opti-
miser. In Proc. DIS '16, pages 3780�3783. ACM, 2016.

[Torres 15] Cesar Torres, Tim Campbell, Neil Kumar & Eric Paulos.
HapticPrint: Designing Feel Aesthetics for Digital Fabri-
cation. In Proc. UIST '15, pages 583�591. ACM, 2015.

[Ullmer 00] B. Ullmer & H. Ishii. Emerging frameworks for tangible
user interfaces. IBM Syst. J. '00, pages 915�931, 2000.

[Umetani 16] Nobuyuki Umetani & Ryan Schmidt. SurfCuit: Sur-
face Mounted Circuits on 3D Prints. arXiv preprint
arXiv:1606.09540, 2016.

[Underko�er 99] John Underko�er & Hiroshi Ishii. Urp: a luminous-
tangible workbench for urban planning and design. In
Proc. CHI '99, pages 386�393. ACM, 1999.

[Ur 14] Blase Ur, Elyse McManus, Melwyn Pak Yong Ho &
Michael L. Littman. Practical Trigger-action Program-
ming in the Smart Home. In Proc. CHI '14, pages 803�
812. ACM, 2014.

[Vanacken 08] Davy Vanacken, Alexandre Demeure, Kris Luyten &
Karin Coninx. Ghosts in the interface: Meta-user Inter-
face Visualizations as Guides for Multi-touch interaction.
In Proc. TABLETOP '08, pages 81�84. IEEE, 2008.

[Varun 15] Perumal Varun & Daniel Wigdor. Printem: Instant
Printed Circuit Boards with Standard O�ce Printers and
Inks. In Proc. UIST '15, pages 243�251. ACM, 2015.

[Villar 07] Nicolas Villar, Kiel Mark Gilleade, Devina Ramdunyellis
& Hans Gellersen. The VoodooIO Gaming Kit: A Real-
time Adaptable Gaming Controller. Computers in Enter-
tainment, vol. 5, no. 3, July 2007.

186 BIBLIOGRAPHY

[Vlachokyriakos 14] Vasilis Vlachokyriakos, Rob Comber, Karim Ladha, Nick
Taylor, Paul Dunphy, Patrick McCorry & Patrick Olivier.
PosterVote: Expanding the Action Repertoire for Local
Political Activism. In Proc. DIS '14, pages 795�804. ACM,
2014.

[Warren 13] Kristen Warren, Jessica Lo, Vaibhav Vadgama & Audrey
Girouard. Bending the rules: bend gesture classi�cation
for �exible displays. In Proc. CHI '13, pages 607�610.
ACM, 2013.

[Watanabe 08] Jun-ichiro Watanabe, Arito Mochizuki & Youichi Horry.
Bookisheet: bendable device for browsing content using the
metaphor of lea�ng through the pages. In Proc. UbiComp
'08, pages 360�369. ACM, 2008.

[Weichel 13] Christian Weichel, Manfred Lau & Hans Gellersen. En-
closed: A Component-centric Interface for Designing Pro-
totype Enclosures. In Proc. TEI '13, pages 215�218. ACM,
2013.

[Weichel 14] Christian Weichel, Manfred Lau, David Kim, Nicolas Vil-
lar & Hans W. Gellersen. MixFab: A Mixed-reality Envi-
ronment for Personal Fabrication. In Proc. CHI '14, pages
3855�3864. ACM, 2014.

[Weichel 15a] Christian Weichel, Jason Alexander, Abhijit Karnik
& Hans Gellersen. SPATA: Spatio-tangible tools for
fabrication-aware design. In Proc. TEI '15, pages 189�
196. ACM, 2015.

[Weichel 15b] Christian Weichel, John Hardy, Jason Alexander & Hans
Gellersen. ReForm: integrating physical and digital design
through bidirectional fabrication. In Proc. UIST '15, pages
93�102. ACM, 2015.

[Weigel 15] Martin Weigel, Tong Lu, Gilles Bailly, Antti Oulasvirta,
Carmel Majidi & Jürgen Steimle. Iskin: �exible, stretch-
able and visually customizable on-body touch sensors for
mobile computing. In Proc. CHI '15, pages 2991�3000.
ACM, 2015.

BIBLIOGRAPHY 187

[Wells 96] Lisa K Wells & Je�rey Travis. Labview for everyone:
graphical programming made even easier. Prentice-Hall,
Inc., 1996.

[Wigdor 16] Daniel Wigdoret al. Foldem: Heterogeneous Object Fabri-
cation via Selective Ablation of Multi-Material Sheets. In
Proc. CHI '16, pages 5765�5775. ACM, 2016.

[Wightman 11] Doug Wightman, Tim Ginn & Roel Vertegaal. Bend-
�ip: examining input techniques for electronic book read-
ers with �exible form factors. In Proc. INTERACT '11,
pages 117�133. IEEE, 2011.

[Willis 12] Karl Willis, Eric Brockmeyer, Scott Hudson & Ivan
Poupyrev. Printed optics: 3D printing of embedded op-
tical elements for interactive devices. In Proc. UIST '12,
pages 589�598. ACM, 2012.

[Wolber 11] David Wolber. App inventor and real-world motivation.
In Proc. Technical symposium on Computer science edu-
cation, pages 601�606. ACM, 2011.

[Wolper 83] Pierre Wolper. Temporal logic can be more expressive.
Information and control, vol. 56, no. 1, pages 72�99, 1983.

[Zhang 16] Yunbo Zhang, Wei Gao, Luis Paredes & Karthik Ra-
mani. CardBoardiZer: Creatively Customize, Articulate
and Fold 3D Mesh Models. In Proc. CHI '16, pages 897�
907. ACM, 2016.

	Acknowledgments
	Abstract
	List of Scientific Contributions
	Contents
	List of Figures
	Introduction
	Background
	Research Goals and Challenges
	Contributions
	Dissertation Outline

	Related Work
	Fabricating Electronic Circuits and Sensors
	Electronic Rapid Prototyping Toolkits
	Circuit Board Fabrication Techniques
	Thin-Film Electronic Sensors

	Digital Fabrication and 3D Modeling
	Simplifying and Accelerating the Fabrication Process
	Facilitating the 3D modeling Process
	Adding Interactivity to Fabricated Objects

	Visual Programming Methodologies
	General-Purpose Visual Programming
	Special-Purpose Visual Programming

	Design Environments for Sensor-Based Interactions
	Real-Time Transformable User Interfaces
	Manual Transformable Interfaces
	Actuated Shape-Changing Interfaces

	PaperPulse: Designing and Fabricating Physical Interfaces
	Introduction
	Brief System Overview
	Walkthrough: The Hungry Monkey Game
	PaperPulse Widget Toolkit
	Electronic Sticker Widgets
	Paper-Membrane Widgets
	Pull-Chain Widgets
	Summary of PaperPulse Widgets

	Pulsation: Specifying Functional Relationships between Electronic Components
	Input Sets
	Output Sets
	If–then Rules
	Map–to Rules

	Architecture and Implementation
	Generating Electronic Circuits
	Pulsation Interpreter
	Generating Printable Pages

	Example Designs and Use Cases
	User Study: Making Stand-Alone Interactive Paper Artifacts
	Preliminary User Evaluation
	PaperPulse Workshop

	Discussion
	Pulsation
	Electronic Circuit Design
	Widget Toolkit

	Summary

	RetroFab: Adapting Existing Physical Interfaces
	Introduction
	Brief System Overview
	Walkthrough: Refactoring a Toaster
	RetroFab Widget Toolkit
	Enclosure Structure Design
	Attached Enclosures
	Remote Enclosures

	Architecture and Implementation
	Computationally Generated Enclosure Designs
	Parametric Component Designs
	Communication with Microcontroller
	Communication with the Mobile Application

	Example Designs and Use Cases
	User Study: Retrofitting a Desk Lamp
	Discussion
	Summary

	Pulsation 2.0: Visual Programming for Physical Interfaces
	Brief System Overview
	Pulsation 2.0 Grammar
	Variables
	Conditions
	Actions
	Events
	Grammar Instance

	Pulsation 2.0 Visual Logic Specifications
	Conditions and Actions with Individual Variables
	Composite Conditions and Actions

	Architecture and Implementation
	Pulsation 2.0 Effectiveness Attributes
	Reducing Solution Viscosity
	Power in Combination

	Discussion
	Summary

	Paddle: Real-Time Physical Transformations
	Introduction
	Brief System Overview
	Interaction Design Space of Transformable Devices
	Initiative to Transform
	Intent of the Transformation

	Engineering and Implementation
	Mechanical Construction
	Software Implementation

	User Study 1: Physical Controls vs Direct Touch
	Task Designs
	Study Procedure
	Hypotheses
	Results
	Study Discussion

	User Study 2: Contributing Factors
	Task Designs
	Study Procedure
	Hypotheses
	Results

	Findings and Design Recommendations
	Physical scrolling through longer lists
	Design Recommendations

	Discussion
	Summary

	Discussion and Future Work
	Digital Fabrication and Transformable Interfaces
	Target Audiences
	User-Experience of Computationally Generated Solutions
	Seamlessly Integrated Physical Interfaces

	Conclusion
	Addressing the Research Challenges
	Addressing the Research Goals

	Appendices
	Pulsation 2.0 Grammar Instance
	Nederlandstalige Samenvatting
	Bibliography
	Blank Page

