
Faculteit Informatietechnologie

Vakgroep Informatica

Magic Lenses for Visualising

Multimedia Data

door

Raf Ramakers

Promotor: Prof. dr. Kris Luyten

Begeleiders: Mieke Haesen, Jan Meskens

Eindwerk voorgedragen tot het behalen van de graad van

bachelor in de informatica/ict

Academiejaar 2009–2010

ACKNOWLEDGMENTS i

Acknowledgments

I would like to thank a number of people who have made this thesis possible.

First of all, I would like to thank Prof dr. Kris Luyten for supervising

this thesis.

Besides, special thanks go to Mieke Haesen and Jan Meskens. They

introduced me to the interesting problems discussed in this work. During

the past half year, they guided me through this thesis with ideas, advice,

and feedback. For every question I had, they made time for me.

More personally, I would like to thank my parents for giving me the op-

portunity to study, and for supporting me throughout my whole life and

education. Finally, I thank my friends for the moments of humor and relax-

ation during the creation of this thesis.

Finally, I would like to show my gratitude to Luc Adriaens for recording

videos about this work and to the EDM researchers who anticipated in the

usability test.

Raf Ramakers, June 2010

Magic Lenses for Visualising

Multimedia Data
door

Raf Ramakers

Eindwerk voorgedragen tot het behalen van de graad van

bachelor in de informatica/ict

Academiejaar 2009–2010

Promotor: Prof. dr. Kris Luyten

Begeleiders: Mieke Haesen, Jan Meskens

Faculteit Informatietechnologie

Universiteit Hasselt

Vakgroep Informatica

Summary

With a large amount of video data available, finding an event of interest can
be very complex and time consuming. Even professional users have to skim
many hours of stored video data before they find a suitable fragment.

In this thesis, direct manipulation tools called magic lenses will be used to
explore video data very fast and intuitive. Furthermore, the composition of
magic lenses will be examined to provide more complex queries for finding
events of interest.

A magic lens is a generalization of the lens metaphor. Therefore, the appli-
cation would have more potential if users can interact with these tools in the
same way as they can interact with lenses in real world. For this reason, the
application will be developed on a multi-touch screen. These displays are
available in an increasing number of technologies and require new ideas for
interaction, to improve User Experience.

To demonstrate the possibilities of magic lenses and multi-touch interaction,
a new rich media application for video exploration will be created.

CONTENTS iii

Contents

Acknowledgments i

Summary ii

Contents iii

1 Introduction 1

1.1 Purpose of this Thesis . 1

1.2 Overview of this Thesis . 2

2 Multi-touch Displays 3

2.1 History . 3

2.2 Analysis of a Multi-Touch Display 5

2.2.1 Light Sources . 6

2.2.2 Optical Sensors . 7

2.2.3 Visual Feedback . 8

2.3 Optical Multi-touch Technologies 9

2.3.1 Frustrated Total Internal Reflection (FTIR) 9

2.3.2 Diffused Illumination (DI) 11

2.3.3 Technique Comparison 14

2.4 Multi-touch detection and processing 16

2.4.1 Touchlib . 16

2.4.2 FTIRCap . 16

3 Multi-touch User Experience 18

3.1 Gestures . 18

3.1.1 Direct Gestures . 19

3.1.2 Symbolic Gestures . 20

3.1.3 Gestures and Multi-User Aspects 22

CONTENTS iv

3.1.4 Problems using gestures 24

3.2 Input visualization techniques 25

3.2.1 Touch Feedback Ambiguity Problem 26

3.2.2 Input Visualization . 27

4 AMASS++ Archive 33

4.1 AMASS++ Summarized Data 34

4.1.1 Summarization Constraints 35

4.2 Parsing The Summarized Data 35

5 Magic Lenses 38

5.1 The Magic Lens Concept . 38

5.2 Magic lenses and Data Filtering 40

5.3 Advantages of Magic Lenses 41

5.4 Magic Lenses for Visualising Video Data 42

5.4.1 Searching for Fragments 43

5.4.2 Searching for Videos 45

5.5 Interacting with Magic Lenses 48

6 Implementation 52

6.1 Technologies . 52

6.1.1 .NET/C# . 52

6.1.2 WPF/XAML . 53

6.2 Data Structure . 54

6.2.1 Model-View-ViewModel pattern 55

6.2.2 Handling Input . 57

6.3 Implementing Lenses . 63

7 Usability Tests 65

7.1 The purpose . 65

7.2 Methodology . 66

7.2.1 The Procedure . 66

7.2.2 Participants . 66

7.2.3 Introduction . 66

7.2.4 Tasks . 67

7.3 Findings and Results . 68

7.3.1 Results of the questionnaire 68

7.3.2 Findings . 68

7.3.3 Overall Results . 71

CONTENTS v

8 Future Work 72

8.1 More Types of Lenses . 72

8.2 Dept of the lenses . 73

8.3 Visualizing lenses on top of a video 73

8.4 Creating an AND-relation . 75

8.5 Improving the Visualization of Relations 76

8.6 Filtering on different levels . 76

9 Conclusion 80

Samenvatting (Dutch Summary) 82

A Usability Test: Instruction Document (in Dutch) 84

A.1 Inleiding . 84

A.2 Verloop van de test . 84

A.3 Taken . 85

A.4 Vragenlijst . 85

Bibliography 89

List of Figures 94

List of Tables 97

INTRODUCTION 1

Chapter 1

Introduction

Nowadays, videos are available from an increasing number of sources, such as

webcams, home videos, surveillance systems and television retransmissions.

With such a large amount of video data finding, analyzing and processing a

fragment of interest in these videos can be very complex and time consuming.

There are a number of automatic techniques available for event detection and

object tracking but these do not solve the problem. While they may reduce

the amount of data significantly by converting a raw video stream into a set

of abstract objects, there is still a large amount of data for a person to deal

with. On the one hand, when dealing with personal video data, it may be

possible to exploit your own knowledge to help managing the search. On the

other hand, when dealing with an arbitrary video or videos in the archive of a

news station, finding an event is similar to looking for a needle in a haystack.

1.1 Purpose of this Thesis

Finding a suitable video fragment in a video archive is mostly a complex

task. Information visualization techniques address these problems by pro-

viding graphical presentations of the data and direct manipulation tools for

exploring this data. In this thesis, a novel interaction technique called magic

lenses will be used to find an event of interest in a video.

1.2 Overview of this Thesis 2

Magic lenses are semi-transparent User Interface elements to visualize

specific data underneath, for example parts of a video. When moving a lens

over a video, fragments of interest can be highlighted. This is just one exam-

ple of the possibilities that these direct manipulation tools can provide. In

this work, advanced features of magic lenses such as building queries will be

examined as well as the interaction with these tools for finding fragments of

interest in a vast archive of video data. Furthermore, an application demon-

strating these new interaction techniques will be created. Finally, a usability

test will evalulate the value of these new ideas.

When working with magic lenses, all actions are performed in the same

spatial area because these lenses manipulate objects that are located directly

underneath. Accordingly, it is more intuitive if users perform their actions

on that spatial area instead of using traditional input devices. Therefore, the

application will be created on a multi-touch display.

1.2 Overview of this Thesis

First of all, chapter 2 gives an introduction into the currently available camera

based multi-touch techniques and their components. These new platforms

bring new challenges, some that can be partially solved using current soft-

ware design paradigms, but many that will require applying new ideas from

research in Human Computer Interaction. Therefore, chapter 3 will cover

some essential parts of applications on a multi-touch device. In chapter 4

the video archive used in this work will be introduced and chapter 5 explains

the power of magic lenses for filtering this archive. Eventually, chapter 6

describes the technologies and data structure needed to implement all these

new interaction techniques. Finally, the results of the usability tests are an-

alyzed and interaction problems are revealed in chapter 7. On top of that,

chapter 8 and 9 describe respectively the future work that can be done in

this research area and the conclusion of this thesis.

MULTI-TOUCH DISPLAYS 3

Chapter 2

Multi-touch Displays

Interactive graphics devices that combine camera and tactile technologies

for direct on-screen manipulation, are known as multi-touch displays. This

technology exists since 1970 and has been available in different forms. Multi-

touch displays allows users to control multiple input pointers independently.

Depending on the size of the display, multiple persons are allowed to interact

with the same surface at the same time. Due to the improvement of process-

ing power of modern desktop computers, multi-touch technology does not

longer require expensive equipment.

2.1 History

Since 1970 (see figure 2.1), several research groups have done research on

touch sensitive surfaces. Patents from that time [[23],[24],[25]] demonstrate

how camera based touch sensitive surfaces can be constructed. Multi-touch

technologies have a long history, which is comparable to the mouse that was

invented in 1965 and became ubiquitous in windows 95 [3].

In 1982, the University of Toronto’s Input Research Group developed the

first real human-input multi-touch system [8]. This system used a frosted-

glass panel with a camera placed behind this glass. When one or more fingers

touch the glass, the camera detects the action as one or more black spots on

2.1 History 4

a white background, which the system considers as input. Since the size of

a dot was dependent on pressure, the system was pressure-sensitive as well.

Without this pressure sensitivity, a touch based system would only have two

states: touch or no touch. When a touch table is able to sense different levels

of pressure, it becomes a three-state model like all other input devices [11]:

� State 0, no physical contact is made with the input device;

� State 1, the input device is tracking;

� State 2, the input device is dragging.

A breakthrough occurred in 1991, when Pierre Wellner published a paper

on his multi-touch Digital Desk [5]. This system uses an early front projection

tabletop system that uses optical techniques to sense both hands/fingers as

well as certain objects, such as paper-based controls and data. This work

clearly demonstrated multi-touch concepts such as two finger scaling and

translation of graphical objects using either a pinching gesture or a finger

from each hand.

In 2005, Han presented a low cost camera based multi-touch sensing

technique [12]. Han highlighted the potential for multi-touch interaction

in the development of the next generation of interfaces. The system uses

the technique called Frustrated Total Internal Reflection (FTIR, described

in more detail in Section 2.3.1) which involves trapping infrared light in a

sheet of acrylic. When touching this sheet, the touched spot will frustrate

and trapped light cause it to leak out the sheet. A camera records where

infrared light is leaking and recognizes touch. Since Han’s work, there was

an explosion of interest in multi-touch interaction. Hardware implementa-

tions of multi-touch interaction have allowed for the low cost development

of surfaces and enabled much research exploring the benefits of multi-touch

interaction.

In 2007, Apple launched a new cellular phone: the Apple iPhone. With

this product, Apple introduced multi-touch technology to control the phone.

The iPhone senses touch by employing electrical fields. On touch, changes in

2.2 Analysis of a Multi-Touch Display 5

this electrical field are measured. This allows the iPhone to detect the part

of the phone that is being touched. With the iPhone, Apple reintroduced

prior multi-touch concepts such as the pinch gesture.

Later in 2007, Microsoft demonstrated their version of a multi-touch table,

the MS Surface. This table looks like a coffee table with an interactive

surface. In this technique, the display is illuminated with infrared light from

the back. When a user touches the table, it will reflect infrared light that can

be captured by the cameras inside the table. Because of the use of multiple

cameras, the input resolution is high enough to detect objects. Microsoft

has demonstrated how fiducial markers can be used to tag objects and allow

specific interaction with the table [29].

We can say that multi-touch input has hit the mainstream. The de-

mand for these systems is pushing multi-touch to modalities ranging from

camera-based wall-sized installations seen on CNN to the iPhone’s capacitive

screen. Figure 2.1 provides an overview of some very important points in the

evolution of multi-touch displays.

2.2 Analysis of a Multi-Touch Display

Over the years many touch technologies have been developed. These tech-

nologies can be divided in two major touch technology trends: the non-optical

and optical approach. Many non-optical approaches have already found their

Figure 2.1: Some very important points in the technical evolution of the touch

technology.

2.2 Analysis of a Multi-Touch Display 6

way into consumer products, albeit in smaller interactive surfaces (such as

mouse pads on laptops and touch-screens on phones). On the other hand

many of these technologies require industrial fabrication facilities. Therefore

the focus in this work is entirely on the optical approach.

This section describes the most important parts of optical multi-touch

approaches. In essential, there are four reasons for the popularity of this

technology: scalability, low cost, ease of setup and due to their simple con-

figuration they also have the potential to be very robust. Many technologies

in this multi-touch approach shares some common parts: an optical sensor

(typically one ore more cameras), a light source, and visual feedback in the

form of projection or LCD.

2.2.1 Light Sources

If a hand touches a surface that is not overlaid on the screen it is called

a touch tablet or touch pad. On the other hand, touch screens are systems

where users are pointing exactly where they see the object. As a consequence,

the camera in a touch screen records the same area where the projection oc-

curs. It is important that the camera does not capture the projected images

when trying to track the fingers/objects on the display. Image processing on

each captured frame can be employed to overcome this problem. Captured

frames are converted to a gray scale images and projected images are re-

moved by subtracting the current frame with a reference frame. As a result,

the recorded frames only include white contours (blobs) which are points of

contact.

The performance of a multi-touch device depends on the underlying hard-

ware and software. When a user touches a multi-touch device, she expects

to get immediate visual response. The responsiveness of the device is a fac-

tor that indicates the time needed to process the user’s input and present

the user’s result. To improve this responsiveness, many optical multi-touch

technologies use infrared light instead of image processing to subtract the

contact points from the (static) background.

2.2 Analysis of a Multi-Touch Display 7

Infrared (IR) is a portion of the light spectrum that lies just beyond

what can be perceived by the human eye. It is an electromagnetic radiation

with a wavelength longer than visible light, but shorter than microwaves [9].

This special portion of light can be created in different ways. There are

technologies that uses LED infrared light, such as Frustrated Total Internal

Reflection (section 2.3.1). Other technologies such as Rear-side Illumination

(section 2.3.2) for example produces infrared light with basic illuminators.

Furthermore, optical solutions such as Front-side Illumination (section 2.3.2)

exists which do not require an infrared light source. Instead they use ambient

light of the environment.

2.2.2 Optical Sensors

In concerning to multi-touch, infrared light is mainly used to cut out the

visual image in the visible light spectrum that is being captured by the cam-

era. Most digital cameras and webcams are fitted with a filter to remove the

infrared part of the spectrum so they only capture the visible light spectrum.

A camera that only captures infrared light can be created by removing this

infrared filter and replacing it with one that removes the visible light. On

some cameras it is possible to remove the IR filter, on other (more expen-

sive) cameras, the lens has to be replaced with a lens without coating. Most

cameras will show some infrared light without modification, but much better

performance can be achieved if the filter is replaced.

Cameras able to detect infrared light that illuminates the objects or fin-

gers on the touch surface are also capable to record all other colors of the

spectrum. In order to block this light, a bandpass filter (see Figure 2.3(g))

can be used. This filter only allows light from a specific wavelength to pass

through.

A very crucial property of the camera in a multi-touch table is the resolu-

tion. The higher the resolution, the more pixels are available to detect fingers

or objects in the camera image. This is very influenced for the precision of

the touch device and is always in relation with the size of the multi-touch

2.2 Analysis of a Multi-Touch Display 8

display. Another critical part is the frame rate of the camera, this should be

at least 30 frames per second allowing smooth interactions.

2.2.3 Visual Feedback

The use of a projector is the most popular technique to display visual feed-

back on the table. Rear projection is used to project the interface image

on the projection screen from behind the surface. There are two main dis-

play types of projectors: LDP (Digital Light Processing) and LCD (Liquid

Crystal Displays). It is important that the projector has the appropriate

resolution, throw and brightness, and that the lag between input and output

is appropriate for the target application. The throw is the distance between

the projector and projection surface that is required to display an image of

a specified size. For example in order to have a screen size of 34inch, a dis-

tance of 60cm between the projector and projection screen may be needed.

It is possible to use mirrors to reduce this distance (see figure 2.2), but this

reduces the quality and brightness of the image and significantly complicates

the design of the device.

Figure 2.2: The use of mirrors to reduce the distance between the projector and

the projection surface [20].

2.3 Optical Multi-touch Technologies 9

2.3 Optical Multi-touch Technologies

The previous section described the most important parts of optical based

multi-touch tables. In this section the two most popular optical based solu-

tions: Frustrated Total Internal Reflection and Diffused Illumination will be

discussed and compared (section 2.3.3)

2.3.1 Frustrated Total Internal Reflection (FTIR)

FTIR is the first optical based multi-touch technology that will be discussed,

it is also the technology that I am going to use for this thesis. This is

a very popular optical multi-touch methodology since Jeff Han introduced

it in 2005 [12]. FTIR actually refers to the well-known underlying optical

phenomenon Total Internal Reflection [30]. This occurs when a ray of light

strikes a medium boundary at an angle larger than a particular critical angle.

This angle depends on the refractive indexes of both materials and can be

calculated mathematically using Snell’s law. If the refractive index is lower

on the other side of the boundary, no light can go through and all light is

reflected.

In a very basic FTIR construction, infrared LEDs (figure 2.3(a)) are

mounted on four sides of a sheet of acrylic (figure 2.3(b)) [20]. When the

LEDs are turned on, infrared light will become trapped in the sheet of acrylic.

There is no refraction in the material so the light beam is totally reflected

(figure 2.3(c)). When a user touches the surface, the light escapes (figure

2.3(d)) and is reflected at the finger’s point of contact due to its higher re-

fractive index. Now the reflection is no longer total at that point. The light

exits the acrylic in a well defined area under the contact point which can be

seen by the camera. A basic set of computer algorithms can be applied to

the camera image to determine the location of the contact point. On the rear

side of the acrylic sheet a diffuser is placed, which functions as a projection

screen for the digital projector (figure 2.3(e)). Without a diffuser, the cam-

era will not only see touch-points, but all objects behind the surface. So the

2.3 Optical Multi-touch Technologies 10

diffuser is not only a projection screen but the layer also ensures that only

bright touches are visible to the camera.

Figure 2.3: The bare minimum parts needed for a FTIR setup [32].

The previous paragraph described just the bare minimum parts needed

for a FTIR setup. To improve the quality of the multi-touch table some

optimalizations are needed to the elaboration. First of all, baffles (figure

2.3(f)) are required to hide the light that is leaking from the sides of the

LEDs. With the basic setup, the performance mainly depends on how greasy

the fingertips of the user are. Wet fingers are able to make better contact

with the surface. Dry fingers and objects will not be able to frustrate the

TIR. To overcome this problem a compliant layer (figure 2.4(a)) is needed

on the top of the surface. These compliant surfaces are typically composed

of a soft and transparent material. On top of the compliant layer, a rear

projection material is placed. This material prevents the compliant layer of

becoming damaged and also functions as a projection screen. So the diffuser

on the rear side is no longer needed because the projection layer on top has

all its functionalities. Additionally, this has the advantage that the fingers

touch the projected images directly.

2.3 Optical Multi-touch Technologies 11

Figure 2.4: FTIR schematic diagram depicting some improvements to increase

touch sensitivity [20].

2.3.2 Diffused Illumination (DI)

Diffused Illumination [20] is the second very popular optical based technology

that this chapter is focusing on. DI comes in two main forms: Front Diffused

Illumination and Rear Diffused Illumination. The basic difference between

FTIR and Diffused illumination technologies is manifested in the fact that

FTIR is based on refractive indexes whereas DI is based on the contrast

between the silent image and the finger that touches the surface.

Rear-side Illumination (RI)

In this technology, there is no need to attach many LEDs on the border.

This kind of optical based multi-touch surface uses one or more infrared

light illuminators behind the display (see figure 2.5). A part of infrared light

will be diffused on the diffuser, another part will pas through. The diffuser

is located on the top or the bottom of the surface and also functions as a

projection layer.

2.3 Optical Multi-touch Technologies 12

When the display is touched, the fingertips reflect less light back to the

camera than the objects in the background. This allows the system to detect

touches. Because the technique is based on reflection rather than changing

the refractive index, it works with wet and dry fingers. In contrast to FTIR,

the compliant layer is not needed anymore. furthermore, because sensing

does not rely on surface contact, any transparent surface (like glass) can be

used.

The quality of the diffuser is a significant factor for the performance of the

surface. It is important that the diffuser does not absorb too much infrared

light, if it happens, the contrast between the background and the fingertip

will be very low. If the diffuser does not absorb enough infrared light, it will

be illuminating objects which are near but not on the screen. This would

result in false touch detection.

Figure 2.5: General setup of a Rear-side illumination system [19].

Besides fingertips, it is also possible to detect other objects that reflect

light on the surface (for example: cellular phones, cards, etc.). These objects

can be recognized based on their shape or fiducials [7] (easily recognizable

markers) printed on their bottom surfaces. Depending on the resolution

2.3 Optical Multi-touch Technologies 13

of the underlying infrared camera, it is possible to allow tracking object’s

position and orientation. This opens up new interaction capabilities in which

physical objects can be detected and recognized to trigger specific software

functions.

Front-side Illumination (FI)

The second important technique used within the diffused illumination topic

is called Front-side Illumination. Similar to all other optical multi-touch

technologies, a light source is used. FI does not need an infrared light source,

but uses the ambient light of the environment. FI shares some common

properties with rear-side illumination. First, any transparent surface can be

used. Second, the diffuser is very important because it takes care of ambient

light to spread evenly over the surface. By touching the surface, shadows

will appear underneath the fingertips which the camera can track because

the ambient light can not reach it (see figure 2.6).

Figure 2.6: General setup of a Front-side illumination system [19].

Front-side illumination can be seen as the cheapest way of camera based

2.3 Optical Multi-touch Technologies 14

multi-touch devices. Nevertheless, the performance of the surface highly de-

pends on the quality of evenly distributed light and therefore it is less reliable

and precise than FTIR and RI. Even traditional objects or fiducial markers

cannot be tracked because the technology is based on shadows instead of

reflection of infrared light.

Since the Diffused Illumination technique relies on contrast differences,

the environment in which the multi-touch display is placed has a large influ-

ence. Direct sunlight or light sources overhead can decrease the performance

and tracking.

2.3.3 Technique Comparison

In sections 2.3.1 and 2.3.2 three essential optical based technologies have

been described in detail. Figure 2.7 provides a quick summarization of the

pro en cons of these multi-touch solutions [19].

2.3 Optical Multi-touch Technologies 15

Figure 2.7: Advantages and disadvantages of FTIR, Rear DI and Front DI com-

pared to each other.

2.4 Multi-touch detection and processing 16

2.4 Multi-touch detection and processing

With the hardware in place, there is also a pipeline of image processing

operators needed that transform a camera image into user interface events.

Only the FTIR tracking pipeline will be described because this is the multi-

touch technology I will be using.

In the case of FTIR, the video processing chain can be very short. There

are three major steps that can be distinguished:

1. The pre-processed step: images captured by the camera are processed

to remove unchanging parts using previous images (history substrac-

tion).

2. Bright regions are detected in the pre-processed image. These are areas

where something is touching the surface.

3. The postprocessing step, here corresponding touches in different camera

frames are found and transformed in screen coordinates.

There exists libraries that take care of images captured by the camera, no-

table examples are Touchlib, an open source library and FTIRCap, a library

that I will be using.

2.4.1 Touchlib

Touchlib stores a copy of the current frame and uses it as a reference frame to

perform background substraction on the next frames. By interfering between

these frames, Touchlib sends events to the user program such as finger down,

finger moved and finger released [31].

2.4.2 FTIRCap

FTIRCap [21] takes frames captured by the infrared camera as input and

creates touch-points by performing computer vision algorithms. Each touch-

point consists of its screen coordinates, its size and intensity. After cali-

brating camera/projection, the touch-points are streamed over UDP at a

2.4 Multi-touch detection and processing 17

frequency of 60Hz. This results in a very fluent input interaction. Because

the FTIRCap application sends its touch-points over UDP, the multi-touch

program can run on another computer.

In this work, FTIRCap will used to retrieve the touch-points from the

frames captured by the camera.

MULTI-TOUCH USER EXPERIENCE 18

Chapter 3

Multi-touch User Experience

The video analysis application created in this work tries to obtain a natural

multi-touch interaction experience. Multi-touch techniques can be employed

to perform tasks more intuitively by using gestures, supporting multiple users

and combining displays with real physical objects. However, designing such

natural user interfaces brings new challenges, which are difficult to solve

with current interaction paradigms. This chapter discusses research in Hu-

man Computer Interaction to create more natural interactions and how these

techniques are applied in the video analysis application (see figure 3.1).

3.1 Gestures

A gesture is a form of non-verbal communication in which visible bodily

actions (hand moves) communicate particular messages to the system. These

gestures can replace static icons in (desktop metaphor based) programs to

perform specific actions. The real world is already multi-touch and we use

gestures all of the time. If done right, these systems should be as easy to

interact with as picking up a pencil, drawing a picture and showing it to

someone.

Gestures can be classified in two groups based on the moment of inter-

pretation of the movement: direct gestures and symbolic gestures.

3.1 Gestures 19

Figure 3.1: The multi-touch video analysis application.

3.1.1 Direct Gestures

A direct gesture is a gesture where each part of the movement is interpreted

at a predefined interval. These gestures describe patterns that allow users to

manipulate objects directly. Using gestures to perform manipulations such as

rotate, scale or translate results in a very fast, easy and intuitive interaction.

Therefore, this type of gestures is called natural gestures. Due to the fact

that it is difficult to provide affordances that shows the number of touch-

points needed to perform a gesture, the number of fingers needed to perform

the direct gestures are not limited. A couple of these type of gestures are

integrated in the application created in this work:

� To move an object, one or more fingers can be used to provide forces

in the same direction.

� Enlarging or shrinking an object requires a minimum of two fingers

moving to or away from each other to respectively shrink or enlarge the

3.1 Gestures 20

object. Essentially, there is only one moving finger needed to perform

a scale gesture, the other touch-points can be non-moving.

� To rotate an object, a minimum of two fingers is necessary. In essence,

rotation can occur in two situations. In the former, non-moving touch-

points exists. In this case the center of these touch-points is the center

of the rotation. The other moving fingers causing the force of rotation

around this point. In the latter situation, there are only moving touch-

points which will all perform a part of the rotation around the center

of these fingers.

3.1.2 Symbolic Gestures

Symbolic gestures are patterns based on the full trajectory of the movement.

For this reason, these gestures can only be interpreted when the trajectory

is completed and the finger is released from the surface. Patterns can be

made in any shape such as triangles, circles or even text characters. In this

work, two symbolic gestures are implemented: a polygon gesture and a line

gesture. The later will be described in the section 3.1.3.

When working with many objects on a multi-touch display, manipulating

each individual object (for example: scaling, rotating, translating, aligning,

deleting, etc.) can be an annoying task. To optimise this task, the user can

select multiple objects by painting a polygon around them (see figure 3.2(a)).

Objects located inside or intersecting this polygon will be selected (see figure

3.2(b)). The selection can be transformed, resulting in a manipulation of

all elements in the selection. Furthermore, all objects can be deleted or the

selection can be organized with just one click on a button. The organization

tool will align the videos in a grid and place the lenses on top (see figure

3.2(c)).

3.1 Gestures 21

Figure 3.2: Selecting multiple objects(a), (b) and organizing all these objects(c).

3.1 Gestures 22

3.1.3 Gestures and Multi-User Aspects

Multi-touch systems can recognize multiple gestures at the same time. The

possibility of tracking so many fingers at once opens up the system for mul-

tiple concurrent users all standing around the table and interacting with the

surface at the same time, this is called multi-user. With all of these new in-

put capabilities come new design challenges. When two users standing over

a surface, are facing each other, the system does not know how to orient

objects because the orientation of the users are not known. Furthermore, it

becomes difficult to find an appropriate location for menus in order to sup-

port multiple concurrent users. Gestures can help to identify the position of a

user around the table. For example, when the user wants to add a rectangle,

she can draw a rectangular sketch on the surface. The system interprets this

gesture and creates a rectangle with the specific orientation at that position.

To generalize this method and not only support drawings, all objects can be

grouped on a sheet which is visible when performing a gesture.

In this thesis, the user interface is totally invisible, resulting in a maximal

support of multiple users. Users can start working by performing a line

gesture (symbolic gesture). This simple action (see figure 3.3(a)) displays a

menu between begin and end point of the line with the specific orientation(see

figure 3.3(b)). In this main menu, users can discover all available features.

Notice users are supported because the right affordances are provided to make

visible which actions and features that are possible through the use of the

visible clue that list all potential actions. From this menu, sheets of objects

(lenses or videos) can be displayed by tapping on a menu item. Dragging an

object to the surface will add this object with the same orientation as the

menu (see figure 3.3(c)).

When many objects are grouped on a sheet, a scrollable area can reduce

the size resulting in a larger workspace. In a traditional GUI, dragging the

scroll-handler downward causes the content to move upward, keeping with

the customary GUI metaphor that one is moving the viewing window, not

the content. Realizing the power of gestures, scrolling can be accomplished

by dragging a finger through the content area (see figure 3.4). This type

3.1 Gestures 23

Figure 3.3: Popping up a menu(a),(b) and add a video(c).

3.1 Gestures 24

of interaction is more intuitive because the user can move the content itself

not the viewing window. Further, scrolling can be realized by touching any

content, instead of dragging a scrollbar at the border of the area.

3.1.4 Problems using gestures

Many natural user interfaces are entirely gesture based. However, gestures

are not easy to learn and difficult to remember. Only a few are innate or

readily predisposed to rapid and easy learning. Even simple gestures such as

hand-waving gestures of hello, goodbye and come here are culture specific.

One of the key challenges in a gesture-based system is offering affordances

that will sufficiently guide users to make the right gesture. Showing what is

possible is difficult, because the desktop metaphor based on icons is replaced

with gestures. Consequently, the visibility in a gesture-based system is mostly

very low as in the video analysis application. While touching an object might

be intuitive, providing the right affordances to let the novice users know that

they can actually use multiple fingers to shrink or grow the size is a difficult

task. A good start is to make these actions as explicit as possible by removing

constraints at the number of fingers and making the User Interface attractive.

When the interface seems inviting, fun and playful, people get engaged. All

it takes is for a user to accidentally touch an object with multiple fingers and

see it change in size to understand that such things are possible. After one

such unexpected, users will likely become more comfortable with just trying

things out to see what is possible.

Gesture and touch-based systems are already well accepted. As a result,

people try to perform traditional gestures to systems that do not understand

them: waving hands in front of sinks that use old-fashioned handles, not

infrared sensors, to dispense water, tapping the screen of non-touch-sensitive

displays, etc. Therefore, standard conversions need to be developed so the

same gestures mean the same thing in different systems [22].

3.2 Input visualization techniques 25

Figure 3.4: Scrolling through content by performing a natural move gesture.

3.2 Input visualization techniques

Multi-touch systems are no different from any other form of interaction.

They need to follow the basic rule of interaction design: providing some sort

of noticeable feedback for each action taken by the user. The idea of feedback

is more than just showing the result of a specific action. Feedback from any

different action adds up to provide information about the current state of

the system. This becomes even more relevant with multiple users interacting

with the system concurrently. Feedback related to a user’s action may be

relevant to the other users.

In traditional systems with a mouse as input device, there are two levels

of feedback. First of all, the Operating System provides universal feedback

for the input device. Moving the mouse will result in a movement of the

arrow on the screen, this reassures the user that the system is still working.

Furthermore, physical activation of a mouse button affirms that the input

is delivered, and the position of the mouse pointer makes it apparent where

the input is delivered. The secondary form of feedback is provided by the

applications running on top of these systems. As a result, each application

provides its own feedback independent of the feedback supported by the

Operating System. In contrast, when using customary multi-touch systems,

3.2 Input visualization techniques 26

these systems provide only the second type of feedback: feedback from the

application.

3.2.1 Touch Feedback Ambiguity Problem

Most applications on touch based systems do not integrate any form of feed-

back to a user’s input. They only give feedback when a functionality triggered

by the user is successfully executed. Interacting with these kind of systems

can be very confusing in a number of situations where user’s input results in

unexpected behaviour:

� The hardware failed to detect the touch. In this case users will wait

to get response to the execution of the functionality. In addition, they

will never get the response for that action and they will not be able to

distinguish if the hardware failed, the action was unsuccessful or the

input does not map to the expected function.

� Accidental activation: The user did not noticed an accidental touch

because the lack of touch feedback. Therefore, she can get confused

when this touch changes the state of the system.

� Non-responsive contact: The user wants to interact with an object not

enabled for touch interaction. As a result, she wont get feedback be-

cause the touch did not result in a successfully executed action. There-

fore, she cannot determine in a glance if the hardware failed or if the

object is stationary.

� Selection problem: When the user missed a target and gets no feedback,

she could be confused. Visualizing whether a user has successfully

touched an onscreen target is essential.

� Fat-finger problem: Touching a surface reduces the contact area to a

single point. This can be a problem when a physical touch on the

border of an element is mapped to a single point near this object.

3.2 Input visualization techniques 27

� Activation event: Depending on the particular hardware, the moment

of activation can vary: with some multi-touch systems, activation oc-

curs before the finger reaches the display, this might result in a different

initial position of the touch contact than where the user thinks the con-

tact occurred.

In all these situations, the user left to deduce the cause of error from no

feedback, this is referred to as the touch feedback ambiguity problem. For

this reason, the user could not correct himself and makes the same mistakes

over and over again. For example, if a user is used to touch a surface with

low pressure, it could take a many trail and errors before she notices that a

certain degree of pressure is required when working with a resistive technol-

ogy. Eventually, the user will loss the sense of control, gets frustrated and

disconnect from the system [16][6].

3.2.2 Input Visualization

To increase user confidence in touch-screens, touch-feedback can be inte-

grated in the system to eliminate the error ambiguity problem. An early

attempt to visualize the input was the TouchLight project [33]. This sys-

tem displayed raw sensor data captured by the camera back to the screen.

On the one hand, this approach addresses the problem of accidental acti-

vation and non-responsive systems. On the other hand, the fat finger and

non-responsive contact problem are unattempted. Furthermore, only optical

based multi-touch systems can integrate this visualization principle because

a camera capturing the raw sensor data is required.

In this work, touch feedback will be produced based on the raw captured

data from the camera. Consequently, this provides a wide variety in the visu-

alization of the touches to cover all situations of ambiguity. The mentioned

touch visualizations are all inspired by Microsoft Ripples [16] integrated in

the Microsoft Surface [17].

3.2 Input visualization techniques 28

Visualizing Touch-points

In traditional systems with a mouse as input device, the pointer is always

visible on the screen as long as the mouse is physically connected. Accord-

ingly, the touch-points only need to be visible when a physical contact with

the surface takes place. In principle, two states can be distinguished: state

0, precedes the detection of a touch-point and in the state 1, the system is

touched (see figure 3.5).

State 0 cannot be visualized, as it precedes the detection. In contrast,

the visualization of state 1 addresses some ambiguity problems:

� Activation Event: When touching a surface, the moment of activa-

tion can vary in different multi-touch technologies. The visible touch-

point should clearly indicate the activation moment.

� Accidental activation: Unintended contacts causing individual re-

sponses. The user perceives these touch-points and eventually corrects

the resulting actions to the system.

Transition B in figure 3.5 is an animation that highlights the appearance

of a new pointer, causing an activation event or an accidental activation to be

more striking. Furthermore, the animation when touching a movable object

is slightly different from the animation when touching a stationary object

such as a background image. If an object is captured by a touch, a circle

Figure 3.5: Touch-points states and transitions. 0: not yet touching 1: station-

ary contact [16].

3.2 Input visualization techniques 29

shrinks around the contact, visualizing the connection between the object

and the finger. If not, a circle splashes outward (see figure 3.6), representing

the metaphor of a search for objects in infinity. These animations prevent

two ambiguity problems:

� Selection: The animation which shrinks around the contact point will

notice the user that she selected a movable object. Obviously, this

animation does not indicate which object is selected. As a result, it

can be very confusing when working with transparent objects and not

knowing which object has the focus. This problem will be discussed in

section 5.5.

� Non-responsive content: A user can determine in a glance if she in-

teracts with an object which is not intend to respond to touch, because

of the splash animation.

To address the fat finger problem, transition B is animated 3.7. This

animation emphasizes the point/finger mapping. After the user lifts their

finger, an animation shrinks the visible touch-point to the actual hit-point.

This animation notices the user which object is eventually touched. Users

working with the system frequently can improve their touches because they

notice the point/finger mapping each time.

Visualizing Movements

Integrating state 1 in an application will address the basic ambiguity prob-

lems. In contrast, many other input problems can occur when interacting

with a multi-touch system. Dragging a contact point to another place will

causes the touch-point visualization to move with it. While dragging, the

state of the touch-point remains in state 1. This can be confusing when

resizing an object to its minimum or maximum size and only a small touch-

point is visible underneath the finger. In this case, the user might think that

the contact point is released. Preventing this problem requires a new state:

state 2, in which the contact point is moving (see figure 3.8).

3.2 Input visualization techniques 30

Figure 3.6: Two animations are shown for transition A. If an object is captured,

a circle shrinks around the contact. If not, it splashes outward.

Figure 3.7: Transistion B: emphasizing the point/finger mapping to address the

fat finger problem.

Figure 3.8: Touch-points states and transitions. 1: stationary contact 2: moving

contact [16].

3.2 Input visualization techniques 31

Movements of a touch point are visualized as a short trail behind the

finger. When attempting to resize an object past its size limits, the user can

still notice the tether and conclude that the movements are being captured

without a release.

In addition, when performing a gesture and no record of the path is left

behind, the user gets no response when that gesture does not perform an

action. Furthermore, there is little information available for the user to help

understand why. Replacing the short trail in state 2 by a tether to the initial

touch-point results in a visualization of the gesture path at any time. This

path reminds individual users of their own gesture as well as it provides

feedback to all other users. A user has a better chance of knowing what

somebody is thinking, if she sees what that person is doing. Especially, it is

easier for a user to notice large gestures than it is for here to follow someone

else mouse movements around the screen. Consequently, the task of keeping

track of other collaborating partners is easier in gesture-based systems.

In summary, state 2 has two visualizations that are slightly different 3.9.

First, a movement of a captured object is displayed as a short trail behind the

finger. Second, movements of a touch-point at a stationary object produces

a path representing the performed gesture.

3.2 Input visualization techniques 32

Figure 3.9: Two visualizations are shown for state 2. If an object is captured,

a short trail is displayed behind the finger while moving. If not, the

full path will be visualized.

AMASS++ ARCHIVE 33

Chapter 4

AMASS++ Archive

In some cases, like filtering a video, there is a risk of exhausting the whole

system if appropriate resources are not available or if resources are not ap-

propriately managed. To solve this problem it is highly desirable to present

appropriate summarization or abstraction of the raw video data to the users.

Video summarization is the process where videos get annotated. The anno-

tated data can be used later in combination with lenses to find the desired

information. In this thesis the AMASS++ summarization archive will be

used to parse the media data.

The AMASS++ project [1] [2] tries to increase the usefulness and us-

ability of multimedia archives by combining text, audio and visual data.

The archive is based on daily news from the BBC. Not only video data is

captured, but also subtitles are extracted by capturing text from the subti-

tle teletext page. Furthermore timing information for subtitles is preserved

so that realignment with the video is possible. To extract meaningful in-

formation from the video media, the videos frames are first captured at a

high frequency. Later some image detection techniques are used to detect

keyframes and frontal faces by fitting a 3D morphable face model to the data.

Also the subtitles are processed to extract keywords related to topics. The

data capture methods are all oriented towards the collection of news media

concerning specific events such as the presidential election in Zimbabwe.

First of all, the raw video data is analyzed, resulting in a set of sum-

4.1 AMASS++ Summarized Data 34

marized data elements. Afterwards when the data is needed, the reduced

data set will be parsed. This results in a set of objects created in a specific

programming language.

4.1 AMASS++ Summarized Data

The AMASS++ project not only touches the problem of finding materials

relevant to queries, but also on the importance of presenting them in the

most productive manner. Therefore the analyzed data is stored in a file

with a specific syntax independent of any programming language. The ana-

lyzed video is called a MediaStream, this mediastream contains a collection

of Faceblocks and Stories.

A Faceblock represents a particular person that is recognized in a video.

Mostly, a person is detected over more than one frame, therefore each face-

block is identified with a begin and end point indicated with the sequence

numbers of the two specific frames. The most relevant frame is marked as

the Keyframe for that faceblock and contains a reference to the image taken

from that frame.

Stories are a parts of a video that treats about the same content. In a

news broadcast, a story generally starts with the news reader that introduces

the news fragment and ends with the news reader that introduces the next

topic. Because a story is a part of a video, each story includes the sequence

number of the begin and end frame. Also subtitles are included in a story

completed with timing information so that realignment with the video is

possible (see figure 4.1).

Finally, a story is provided with a couple of keywords (wordmaps) related

to specific topics for example war, political, military, party, etc. With these

keywords, different stories about the same topic are related.

4.2 Parsing The Summarized Data 35

Figure 4.1: An example of the subtitles in a story in the AMASS++ archive.

4.1.1 Summarization Constraints

When a video gets analyzed there is always a strong reduction in the amount

of data because a video summarization program (such as AMASS++) is

always oriented to track specific elements in a video. The AMASS++ archive

only supports tracking for events of interests and does not support tracking

of objects. So only temporal queries can be executed on the summarization

archive like finding peoples in a specific period. Consequently, spacial queries

are not yet supported like finding people that entered a particular room. This

kind of queries would actually be very useful when querying for example

videos captured by a surveillance camera. Therefore, this kind of data will

be introduced in the next version of the archive.

4.2 Parsing The Summarized Data

After the video’s are summarized and the associated files are created, these

files need to be parsed before they can be used in a specific programming

language. In this work a uniform parser will be used to parse the summarized

data in the AMASS++ archive. This parser is written in C# and is not

related to the application created in this thesis, consequently it can be used

in any application. After parsing the summarized data, an in memory data

4.2 Parsing The Summarized Data 36

structure(see figure 4.2) is created representing the elements described in

section 4.1.

The generated objects are associated in a way that they can be accessed

quickly. For example, when a specific story is given, the related mediastream

can be obtained immediately.

4.2 Parsing The Summarized Data 37

Figure 4.2: In memory data structure of the annotated AMASS++ data.

MAGIC LENSES 38

Chapter 5

Magic Lenses

Video data is available from an increasing number of sources, and yet ana-

lyzing and processing it is still a manual, tedious task. With such a large

amount of video data finding, analyzing and processing a fragment of in-

terest in these videos can be very complex and time consuming. In order

to optimise this task, more advanced video browsers and visualizations are

currently being employed in several research projects [34] [28]. In this thesis,

direct manipulation tools called Magic Lenses will be introduced to explore

data in a video.

5.1 The Magic Lens Concept

The magic lens concept was introduced by Eric A. Bier as a see-through

interface in 1993 [27]. A magic lens filter is a generalization of the lens

metaphor and can be used in any screen-based application. A magic lens is a

screen region that transforms the content underneath it. Users usually drag

a lens over the screen to decide which region is affected. A lens may act as

a magnifying glass, zooming in on the content on which it is placed. It may

also function as a x-ray tool to reveal hidden information.

When multiple lenses are stacked on top of each other, the individual

functionalities are composed. In some cases, different lens orderings will

5.1 The Magic Lens Concept 39

generate different results. Figure 5.1 is an example of a lens that functions

as a x-ray tool to make the curvature of an underlying 3D model visible.

Figure 5.1: Curvature pseudo-color lens with overlaid tool to read the numeric

value of the curvature [27].

Magic Lenses are a subset of the graphical user interface tools called

see-through interface tools. Another semitransparent interactive tool in this

category is a toolglass, which manipulates the object underneath perma-

nently when they are applied. Figure 5.2 shows an example of a toolglass

which changes the color of the object underneath it when that object is se-

lected with the toolglass on top. In contrast to toolglasses, a magic lens only

provides a preview of what changing the property would look like.

Figure 5.2: A color toolglass applies its style to an underlying part of a circle

by clicking through the fill-color button [27].

5.2 Magic lenses and Data Filtering 40

5.2 Magic lenses and Data Filtering

Fishkin et al. [26] illustrated the value of magic lenses when finding specific

information. Their work analyzed the usability of database query systems.

While such systems are very powerful, they are not easy to use for brows-

ing or exploring the data. To solve this problem, the program provided a

graphical view of database values as a starfield display and magic lenses for

exploring the data (see figure 5.3). The former, starfield displays, combine

2D scatterplots for visual information presentation with additional features

to support filtering of individual points, scale, zoom, etc. in order to explore

the dataset. The latter, movable filters, support queries on underlying data

by encoding each operand of the query as a magic lens filter.

Figure 5.3: All cities with high salaries OR low taxes are highlighted as a result

of two disjunctive lenses [26].

Scatterplots, as used in the starfield displays, are techniques for displaying

data as points in a 2-D field. Because a scatterplot is just a collection of

points, this visualization technique can encode large amounts of data. In this

work a database of US census data is used, in which each row represents a city

and each column describes the city along various census metrics: population,

crime rate, etc. This data is especially appropriate for visualization in a

scatterplot because the physical location of a city on a map is an intuitive

mapping to the 2D plane.

5.3 Advantages of Magic Lenses 41

Each lens acts as a filter that screens on some attribute of the cities (for

example, extracting all cities with a crime rate lower than 100 inhabitants

per km2). The threshold value for this attribute is controlled by a slider on

the filter. When the lenses overlap, their operations are combined in a OR,

AND or NOT -relation. The application also provides grouping of filters to

support complex queries.

Each lens can be represented by a function with two parameters: L(F,

M). The first parameter is the filtering function. The second parameter is

the composition mode that describes how the result of the filtering function

is combined with the output of the lenses underneath. For example, if two

filters F1 and F2 need to be applied in an OR-relation to the data underneath,

it is necessary to create two lenses: L1=(F1, AND) and L2=(F2, OR). The

result of positioning L2 over L1 is (F2 OR F1). The composition mode of

the L1 lens is not important if there are no lenses underneath. Figure 5.3

shows an example of two lenses in an OR-relation, the cities which have high

annuals OR low taxes are highlighted.

5.3 Advantages of Magic Lenses

In most applications a control panel with widgets (such as buttons) is an

important area in a program. This panel is used for almost all functionalities

in the application and therefore it needs to be accessed very quickly and easy.

For these reasons a control panel always competes for screen space with the

work area. In contrast, when using magic lenses, once the lenses are added,

there is no need for a control panel. Furthermore, a lens is a manipulation

tool that normally would have existed in the control panel but now is a part

of the work space. As a result, the work area can take up the entire space

and lenses can still be used because they are semi-transparent. They can

even be scrolled partially off the screen to provide an unobstructed view of

the application.

Magic lenses can be used in tiny displays, such as notebook computers

or PDA’s, that have low resolutions. It can also be used on wall-sized multi-

5.4 Magic Lenses for Visualising Video Data 42

touch displays, where a fixed control panel might be physically out of reach

from some screen positions. Lenses can move with the user to stay close at

hand.

In Interfaces based on magic lenses, manipulation can only be accom-

plished on objects underneath a desired lens. These lenses perform manipu-

lations directly on the underlying objects so the user’s attention can remain

focused on this area. In almost every other traditional interface, user atten-

tion cannot remain focused on the area that she manipulates. For example,

when she wants to manipulate an area, the user needs to drag another tool

from the control panel and apply it to the object. In other tools, manip-

ulations can be accomplished by selecting an object in the workspace and

clicking on a button in the control panel. In this case, the result of the

manipulation is applied to another area of the screen.

In short, magic lenses reduce dedicated screen space while providing the

ability to view context and detail simultaneously.

5.4 Magic Lenses for Visualising Video Data

Finding a suitable video fragment in a video archive is mostly a complex

task. Information visualization techniques address these problems by pro-

viding graphical presentations of the data and direct manipulation tools for

exploring the data. In this thesis, magic lenses are integrated into a video

analysis application to support video exploration.

In the previous examples, the see-through interface tools operate in real

time to manipulate the objects. In some cases, like filtering a video, there

is a risk of exhausting the whole system when appropriate resources are not

available or when resources are not appropriately managed. To solve this

problem, a pre-processing step is introduced where the video gets annotated

first. The video summarization data can be used later in combination with

lenses to find the desired information. In this work, the AMASS++ summa-

rization archive will be used to analyze the media data (see chapter 4).

5.4 Magic Lenses for Visualising Video Data 43

5.4.1 Searching for Fragments

Most magic lenses contain a filter that represents a specific person. This

lens basically represents a simple query for retrieving fragments containing

this person. Moving such a lens over a video will apply the filter to the

video. As a result, fragments containing the represented person on the lens

are visualized. Because the AMASS++ archive is especially specialized in

face recognition, the lenses are mainly intended to find fragments of specific

persons. Nevertheless other lenses can be integrated in the application to

support other queries (see chapter 8).

The AMASS++ archive has a great support for temporal queries (see

section4.1.1), therefore the results will be represented in a timeline slider (see

figure 5.4). To integrate the query results and to support multi-touch on this

slider, a specialized widget is created instead of using general sliders. The

time dimension is very obvious in this widget because the time in the slider

thumb (see figure 5.4) represents the current position in the video. The slider

thumb is extended with a sharp corner for precise fragment selection and is

positioned below the bar, therefore the widget remains free for displaying the

query results.

Moving a lens, representing a person (a filter), over the timeline of a video

applies the filter to the overlapping part. When results are found, specific

frames containing this person are highlighted in the slider. Because multiple

lenses can be applied to the same spacial area, a unique color for each filter

is introduced to distinguish the results of the different queries. In figure 5.5,

the lens representing Morgan Tsvangirai (color: blue) entirely overlaps the

timeline. As a consequence all frames in the video containing Tsvangirai are

highlighted in blue. On the other hand, the lens representing Barack Obama

(color: red) partially overlaps the timeline, consequently only the frames

containing Obama in the overlapping area are highlighted. Whereas in figure

5.6, the Barack Obama lens entirely overlaps the timeline accordingly more

results are found. Furthermore, a text balloon with the name of the person

is visible above the timeline (see figures 5.5 and 5.6) to improve the feedback

when the media player is playing a highlighted frame.

5.4 Magic Lenses for Visualising Video Data 44

Figure 5.4: A Media player with a specialized timeline widget to integrate query

results.

Figure 5.5: The Morgan Tsvangirai lens entirely overlaps the timeline, the

Barack Obama lens partially overlaps the timeline.

5.4 Magic Lenses for Visualising Video Data 45

Figure 5.6: The Morgan Tsvangirai and Barack Obama lenses both overlapping

the timeline.

Actually, when multiple lenses are stacked on top of a video an OR-

relation is performed between them: all frames containing one of the per-

sons represented by the lenses on top are visualized in a particular color.

To support more complex queries, for example, finding frames containing

multiple persons, requires the availability of more summarized events in the

AMASS++ archive. In this situation, it would be more likely that multiple

detected events exist in the same frame. Luckily the archive will be upgrated

soon to support more events. Because many events are detected in an en-

tire video, these advanced queries are currently more applicable to retrieve

relevant videos (see section 5.4.2.

5.4.2 Searching for Videos

When users explore video data, it is often desired that they want to examine

if one or more persons appear in a collection of videos. To fulfill this task,

users need to determine if there are highlighted frames in each video. The

application would have more potential if users could tell at a glance if a video

5.4 Magic Lenses for Visualising Video Data 46

satisfies the query.

To optimise this task, videos are obscured if they do not fit one of the

lenses on top of it. Figure 5.7 illustrates this principle. On the one hand,

three videos are obscured because they do not contain frames including Alas-

tair Yates OR Robert Mugabe. On the other hand, six videos are highlighted

because frames including Alastair Yates OR Robert Mugabe exist. In con-

clusion, videos are highlighted when they have results for at least one of the

lenses above.

The default OR-relation is a simple method to examine if a video contains

a specific person. However, to determine which videos incorporate a couple

of persons, an AND-relation is needed. Switching the relation type from OR

to AND between lenses can be accomplished one after another by pressing

on the lenses with one hand and moving the sliding widget to the AND-state

with the other hand (see figure 5.8). The filters now appear in the same lens,

indicating that they are related with an AND-relation. The highlighting

condition of a video is still the same: a video is highlighted when it has

results for at least one of the lenses above. Furthermore, filters in an AND-

relation are compounded in one lens, therefore the video has to satisfy all

the filters in the lens.

Figure 5.9 demonstrates the same situation as the example in figure 5.7,

however the Alastair Yates and Robert Mugabe lens are in an AND-relation.

Consequently only two videos contain frames including Alastair Yates AND

Robert Mugabe, seven videos are obscured.

Switching the relation type back to an OR-relation, can be accomplished

by pulling the pictures of the persons out of the lens one at a time (see figure

5.10).

The relation functionalities in this work are different to the relations in

the application of Fishkin et al. (see section 5.2). The relations described in

the latter are applicable to each individual part (city) of the starfield display.

In the context of filtering a video, a single frame does not contain much

information. Consequently it is not relevant to provide complex queries on

5.4 Magic Lenses for Visualising Video Data 47

Figure 5.7: Highlighting all frames containing Robert Mugabe OR Alastair

Yates.

5.5 Interacting with Magic Lenses 48

Figure 5.8: Switching the relation type between two lenses to an AND-relation

by performing a three-finger gesture.

individual frames, therefore the relations are only incorporated to complete

videos.

5.5 Interacting with Magic Lenses

Magic lenses are semi-transparent User Interface elements. In some cases

this transparency makes it hard to distinguish the ordering of the lenses,

particularly when using much lenses on top of each other. Manipulating

an object in a stack of objects not knowing which is on top, can be very

confusing. Changing a visible property (such as the border color) of an object

when the user is touching it, results in an improvement of the responsiveness

of the system. Furthermore, the user knows immediately which object she

manipulates.

On the one hand, the ordering of the lenses has no influence on the results

in this work. On the other hand, the ordering of lenses towards videos has

5.5 Interacting with Magic Lenses 49

Figure 5.9: Highlighting all frames containing Robert Mugabe AND Alastair

Yates.

5.5 Interacting with Magic Lenses 50

Figure 5.10: Switching the relation type between two lenses to an OR-relation.

a very big influence. In addition, when a user cannot determine at a glance

if a lens is on top or behind a video, she can doubt about whether the video

has no results or the lens does not affect the video. In this thesis, a colored

square representing a lens is added to the border of the video when a new

lens is hovering this video. This solution is demonstrated in figure 5.11, the

video contains a red and a green square because it is affected by the lenses

representing Barack Obama (red) and Morgan Tsvangirai (green). The media

player does not contain a blue square because the lens representing Robert

Mugabe (blue) is behind the video.

Working with magic lenses can be very intuitive because of the lens

metaphor. In contrast, the users can get frustrated when they have to move

all the lenses before they can work with the underlying video such as start,

pause, play forward, rewind, etc. To provide these basic media player options,

user interface elements (such as buttons, sliding widgets and the media time-

line) are created to support manipulation with semi-transparent elements on

top.

With all these media player functionalities, manipulating a video by ges-

tures with a stack of lenses on top, can still be improved. To optimise this

process two buttons (see figure 5.11) are provided in the border of each video

to push it one position forward or one position backward in the stack. Con-

5.5 Interacting with Magic Lenses 51

sequently no other objects need to be replaced when a video needs to be

manipulated with lenses on top.

Figure 5.11: The Push to front button and Push to background button are posi-

tioned at the right side of the video. Two squares representing the

lenses on top of the video are located on the left side of the video.

IMPLEMENTATION 52

Chapter 6

Implementation

Implementing the video analysis application involved research in many tech-

nologies as well as fundamental decisions in the architecture of the software.

In this chapter, used technologies and considerations in the design of the

application will be described.

6.1 Technologies

Many technologies are suitable for multi-touch applications such as .NET/C#,

Flash and C++/openGL. In this work, the .NET/C# programming interface

will be used.

6.1.1 .NET/C#

The Microsoft .NET Framework [14] is a software framework available on

several Microsoft Windows operating systems. On the one hand, it includes

a large library of coded solutions to prevent common programming problems.

On the other hand, a virtual machine manages the execution of programs

using this library. .NET is intended to be the main framework for creating

applications for the Windows platform [15].

The framework can be used in a variety of languages including C#, Visual

6.1 Technologies 53

Basic, J# and C++. In this work, C# will be used. When programming

applications using the .NET Framework, these applications are guaranteed

to run on other machines containing this framework. The programs are

transferable because the compiler generate a common intermediate language

instead of binary code.

The virtual machine that manages the programs created in .NET insures

that the code runs managed. This means that it cannot crash a system, nor

can it make it less stable.

6.1.2 WPF/XAML

The .NET Framework supports many graphical interfaces for example Win-

dows Forms (WF), Windows Presentation Foundation(WPF), Windows Com-

munication Foundation (WCF), etc. In this thesis, WPF will be used to

integrate graphical elements in the application.

Windows Presentation Foundation

Windows Presentation Foundation (WPF)[18] is a subsystem of the .NET

Framework for rendering user interfaces in Windows-based applications. This

graphical system is designed to remove all dependencies with the prehistoric

GDI (Graphics Device Interface) subsystem. Instead, WPF is built on Di-

rectX. Therefore, all content in a WPF application is converted to 3D tri-

angles, textures or other Direct3D objects and then rendered by hardware.

This means that WPF applications get the benefits of hardware acceleration

for smoother graphics and all-around better performance.

WPF covers all areas of video, speech, rich document viewing, 2D and

3D graphics with a consistent programming model. Furthermore, many tech-

niques and effects in one area apply to all the other areas. As a result, the

controls are also extremely composable. For example, an animation can be

integrated in a combobox or buttons and menu’s can be filled with video

clips. In addition, WPF makes it quite easy to skin applications with radi-

cally different looks [35].

6.2 Data Structure 54

In summary, this graphical system is appropriate for describing the higher

level of visual effects that is expected in today’s applications.

Extensible Application Markup Language

XAML [36] is a relatively simple declarative programming language suitable

for constructing and initializing .NET objects in .NET 3.0. It is a XML-based

language to define a user interface with an incredible range of expressiveness.

Although XAML is originally designed to be a XML representation of WPF,

it is a general-purpose language and therefore it can be applied to other

technologies as well. Furthermore, using XAML with WPF is optional, ev-

erything done with XAML can be done entirely in other .NET languages.

On the other hand, it is rare to see WPF used in real world without XAML

for a couple of reasons [37]:

� XAML is the most concise way to represent a user interface.

� The use of XAML encourages a separation of front-end appearance and

back-end logic.

� The design of a user interface created in XAML can be viewed without

compilation.

6.2 Data Structure

In the application, two major parts can be distinguished that required some

Software Engineerings principles: the pipeline from the abstract data to the

visualization and the pipeline from the capturing of the input points to the

handling of events. The former process is implemented using the Model-

View-ViewModel pattern. The latter is implemented in a process with mul-

tiple layers.

6.2 Data Structure 55

6.2.1 Model-View-ViewModel pattern

A well-designed application is an application that is easy to develop, test,

maintain, and evolve. Creating such an application typically involves some

form of separation and encapsulation of responsibilities. A common approach

involves separation of the User Interface (the views) from the business logic

(the model). In fact, that approach is so common that there are a number

of stock solutions, collectively known as the model-view-x paradigm.

The oldest concept is the Model-View-Controller (MVC), dating back to

1979. In this case, the Controller handles all the interaction between the

User Interface and the business model. Besides this, the controller contains

no essential data.

The Model-View-ViewModel (MVVM) is a derivative of the MVC that

takes advantages of particular strengths of the WPF architecture to separate

the Model and the view by introducing an abstract layer between them: a

Model of the View, or ViewModel. This third layer (see figure 6.1) provides

an abstraction of data that a view needs to visualize the information. Fur-

thermore, the ViewModel can store visual states and policies that are shared

by a group of views.

In general, the views know of the ViewModel and bind to its data, to

be able to reflect any changes in it. The ViewModel has no reference to the

Figure 6.1: The Model-View-ViewModel pattern.

6.2 Data Structure 56

views, it holds only a reference to the Model. This makes it easy to replace

views while using the same ViewModel. For the Views, the ViewModel acts

both as a facade to the model and insures that visual states are shared

between views binded to the same data in the ModelView.

Data Binding

WPF introduced the concept of binding User Interface elements to data from

a variety of data sources in the form of common language runtime objects or

even XML [4].

The classic scenario is providing a visual representation of a list of items in

an object located in the ViewModel. Instead of iterating through the list and

manually adding each item to a collectionview (for example an listboxItem to

a listbox), WPF introduced the ObservableCollection. Basically, this is just a

list of objects located in the ViewModel. A widget in the View, for example

a listbox can be binded to the collection in the ViewModel. The binding

mechanism makes sure that the data is always up to date in the View. The

type of the items in a ObservableCollection can be everything. Therefore,

a Value Converter can be used to format the items in a way they can be

represented.

Benefits of using MVVM

Developing a WPF application based on the MVVM design pattern provides

some structural benefits:

� The pattern separates the User Interface from the business logic, mak-

ing it easy to modify one without affecting the other. Furthermore,

it improves the reusability of the model and the replaceability of the

view.

� The ViewModel makes it easy to share visual states between multiple

views.

6.2 Data Structure 57

� The Model-View-ViewModel design is a very loosely coupled design,

making it easy to maintain especially when different teams are devel-

oping the application. The View holds a reference to the ViewModel,

and the ViewModel holds a reference to the Model. The rest is done

by the data-binding infrastructure of WPF.

MVVM-example: Videos

Because of its benefits, the MVVM-pattern is the global pattern in the ap-

plication. Figure 6.2 shows the basic data structure of a video. The entire

view is created in XAML and binded to the ViewModel representation of a

video. In addition, the view could be divided in multiple XAML-files each

binded to its own ViewModel. The ViewModel consists of a couple of objects

representing the visible state of a video, such as transformations, minimum

and maximum sizes, a slider, etc. The real video data and data parsed by

the AMASS++ data parser (see section 4.2) are included in the Model.

Figure 6.2 shows only a minimal representation of the real data structure

in the application. Normally, the transformation, z-index, size ranges, etc.

are included in a base class of the VideoViewModel class. This is because the

information is needed in all movable objects (see figure 6.3). Section 6.2.2

gives an introduction to this layered structure.

6.2.2 Handling Input

The used multi-touch table sends UDP-packets containing information about

the touch-points to the network controller, as described in section 2.4. As a

result, it is not possible to use traditional event handlers for handling input

on objects. Hence, there is a need for algorithms to perform three essential

steps:

1. Recognizing events

2. Mapping of recognized events to events on objects

6.2 Data Structure 58

Figure 6.2: Basic data structure of a video. (Figure 4.2 shows the full class

diagram of the AMASS++ MediaStream).

6.2 Data Structure 59

3. Recognizing gestures on specific objects

Each step is implemented as a separate library (see figure 6.3) and uses

the underlying library to add extra features on top. Basically, each library

in this stack helps to control the complexity. Furthermore, the components

are easy to maintain and reuse. In this section, the principles of each step

will be described. The first library is created at the University Hasselt. The

others are created by myself during this thesis.

Recognizing events

In section 2.4 is described how images captured by a camera are transformed

in screen coordinates and transported over UDP using FTIRCap. This layer,

integrated in the MTInput library (see figure 6.3), analyses the packets and

converts the touch-points into control-points (Pointer objects). Control-

points are touch-points extended with a unique identifier, persistent over one

continuous stroke on the screen. Basically, this layer compares the set of

touch-points to the set of control-points, update their properties and emit

events such as PointerAdded, PointerRemoved, , ReleaseEvent, MoveEvent.

Mapping of recognized events to events on objects

The previous step recognizes touches independent of objects in the applica-

tion. Obviously, touches at specific area’s such as a button, a scroll area,

a slider, etc. need to be recognized as events on these objects before any

significant application can be made. For this reason, the MTInputRipples

library is created (see figure 6.3).

On the one hand, to recognize a touch as a touch on an object, requires

that the library has knowledge of all the touchable objects in the application.

On the other hand, this would break the intension of a library. Therefore

each tangible object in the application contains an instance of the InputEntity

class. This object consists of basic events such as a press-event, release-event

6.2 Data Structure 60

Figure 6.3: The basic input architecture of the application.

6.2 Data Structure 61

and drag-event. Handlers for each event can be created in the application

objects.

Before events on a specific InputEntity instance can be triggered, the

library needs to know which InputEntity has the focus. A Delegate function

(InputEntity GetEntityAtPosition(Point pos)) can be used to retrieve

the InputEntity instance of the object at a specific position (the touch-point).

This delegate function needs to be implemented in the application tier.

To return an InputEntity instance of an object at a specific position, the

location of each object in the application can be checked. This algorithm

is very inefficient when many objects exists. Furthermore, it is difficult to

check if an object, not regular shaped, contains a point. In contrast, a quad-

tree can be used to optimise the search-algorithm. Fortunately, WPF has

implemented such a process to find visual objects, called Hit Testing.

The Hit test algorithm searches for elements in the WPF Visual Tree at

a specific position and returns the element at the top (highest z-index). This

behavior can be changed by implementing the hitTestCallback function. This

function is called for every object at the requested position. As a result, a

priority mechanism can be created to return the element that deserves the

focus. This mechanism can be very useful when supporting basic media

player options with semi-transparent elements on top (a problem stated in

section 5.5). To generalize this method, all elements that are manipulable

behind semi-transparent elements are derived from the FrontElement class

(see figure 6.3).

Apart from triggering events on objects the MTInputRipples library also

deals with input visualizations (introduced in section 3.2.2) using XAML. Be-

cause the input visualization runs on top of the application, it can be reused

in other applications. This provides a consistent visualization over multiple

programs. Once the library is integrated in a system, the programmer does

not have to worry about input feedback, it is all done by the library. Figure

6.4 summarizes all the steps from recognizing an event to the creation of

events on specific objects.

6.2 Data Structure 62

Figure 6.4: Mapping of recognized events to events on objects.

6.3 Implementing Lenses 63

Recognizing gestures on specific objects

When gestures are supported on an object, an instance of the GestureEntity

class located in the MTGestureRecognition library 6.3 can be used. This class

is derived from the InputEntity class and adds special events for gestures.

Handlers can be registered on gesture events that are provided. A gesture

event is triggered when this gesture is performed on a particular object.

6.3 Implementing Lenses

Lenses can be positioned over many videos, they can also be dragged over

videos to move the lens to the other side of the surface. In both situations

system delays can be very frustrated. Therefore, it is necessary that the

calculation of results is very fast. On the one hand, the AMASS++ data

parser (described in section 4.2) solves the problem partially by loading all

the video data when the application is started. On the other hand, efficient

collision detection algorithms are needed to detect an overlap between a video

and a lens.

Moving or adding a lens performs a process that exists of four steps:

1. Detection of videos overlaid by the lens: When a video is totally over-

laid by a lens, a collision detection algorithm is not suitable. A Random

point (for example the left top) of the video can be used to detect if

this point is located inside the lens. In this case, the video intersects

the lens or the video is overlaid by the lens. In both circumstances,

the filter function is executed and thereby the results in the video are

calculated. Each result (a person detected in the video over a period) is

represented by an instance of the SliderElement class, shown in figure

6.2. Furthermore, step 2 and 3 can be skipped.

2. Bounding box collision: This very fast approximate collision detection

algorithm is executed to retrieve the videos that are probably intersect-

ing the lens.

6.3 Implementing Lenses 64

3. Precise collision detection: When an intersection between the bounding

boxes of a video and the lens exist, a more precise collision detection

algorithm is performed to determine which videos are intersecting the

lens. First, the borders of the video and the lens are converted to lines.

Second, the intersections between these 8 lines are calculated. When

one intersection is found, the collision algorithm terminates and results

in the video will be calculated.

4. Collision with the video timeline: When a video is overlaid by a lens

and the results are calculated, each part of the result only needs to

be visible when the lens is on top of that result in the timeline (see

section 5.4.1). Basically, the intersections between the time-line and

the lens are needed. These intersections can be retrieved using the line

collision algorithm in step 3 to calculate the intersections between the

line described by the timeline and the four borderlines of the lens.

USABILITY TESTS 65

Chapter 7

Usability Tests

This chapter describes the test process used to evaluate the application cre-

ated in this work, as well as the results. Chapter 8 describes suggestions for

future work based on findings and results from this test.

7.1 The purpose

The usability test is mainly intended to determine the extent of the lenses to

facilitate a user’s ability to explore videos. Hence, the test is mainly focused

on the use of magic lenses, described in chapter 5. Before the test, a couple

assumptions had been created that can be substantiate afterwards:

� Users are aware of the goal of lenses.

� The results are clearly visualized in the video’s.

� Relations between lenses can be created easily.

� The visualization of relations between lenses is intuitive.

� Creating relations between lenses simplifies the process of finding rele-

vant videos.

7.2 Methodology 66

7.2 Methodology

This section describes the course of the test session, the profile of the partic-

ipants and their role in this usability test.

7.2.1 The Procedure

Five participants took part in the usability test at the Expertise Centre for

Digital Media. In 30 minutes, each subject evaluated the system in a couple

of steps. First of all, an instruction video was provided to show the basic

functionalities of the system. Next, the participant performed two tasks on

the surface while thinking aloud. During the interaction with the table, the

subjects were observed and their behavior and comments were noted down.

After the test, the user completed a questionnaire.

7.2.2 Participants

Three male and two female participants took part in the test. The age range

is displayed in table 7.1.

Age Freq.

20-25 1

25-30 3

30-35 1

Total (participants) 5

Table 7.1: Age range of the participants.

7.2.3 Introduction

Before the actual evaluation, participants where asked to watch an introduc-

tion video. This video showed basic features of the system for:

7.2 Methodology 67

� Adding lenses

� Manipulation of lenses

� Basic operations of a video

� Viewing the results in a video

� Finding relevant videos as a result of a query

� Creating an AND-relation

� Removing the AND-relation

The user could learn these actions by performing the same operation after

each step on a multi-touch system running the video analysis application.

7.2.4 Tasks

After watching the instruction video, the participant performed two tasks

requiring similar actions as demonstrated in the instruction video:

1. How many videos contain fragments of Gordon Brown AND Nicolas

Sarkozy AND Morgan Tsvangirai? Play a fragment that contains Nico-

las Sarkozy.

2. Break the AND-relation between the lenses in task 1 and examine how

many videos contain fragments of Gordon Brown OR Nicolas Sarkozy.

Finally, the test user completed a questionnaire about the experiences us-

ing the system. The full instruction document including this list of questions

can be found in appendix A.

7.3 Findings and Results 68

7.3 Findings and Results

A usability test delivers not only results from the questionnaire, much infor-

mation can be revealed by observing user’s behavior during the interaction

with the application. Furthermore, the success rate and comments deliver

great information about the satisfaction while using the program.

7.3.1 Results of the questionnaire

After task session completion, participants rated the application for eleven

measures. A detailed report of each individual question is provided in table

7.2. The results of the questionnaire are also visualized in a barchart in

figure 7.1. A value of one indicates that the users did not agreed with the

statement. In contrast, a value of five indicates the users entirely agreed with

the statement.

7.3.2 Findings

Based on our observation during the test, we had the opportunity to evaluate

the application very critically.

� Every participant used the basic functionalities of the media player

with lenses on top.

� Many participants said: “It is easy to create complex queries with these

lenses.”

� Some participants requested a faster way to move lenses on top of a

video such as snapping the lenses around the videos. On the one hand,

a mechanism to place lenses on top of a video can speed up the search

process. On the other hand, a snapping tool can be very frustrating

when there are many videos on the surface, when multiple persons

work on the same touch-screen or when the user just wants to filter a

couple of videos. For these reasons a better tool called the organization

7.3 Findings and Results 69

Median

rating

Mean

rating

1. The objective of the lenses (visualizing relevant frag-

ments) is clear.

5 4,8

2. Lenses are very useful for finding fragments in a video. 4 4,2

3. Moving a lens over a video to view the results is very

intuitive.

4 4,2

4. Using colors result in a very clear visualization of the

relevant fragments.

4 4

5. It is very intuitive to use the basic features of a media

player (play, pause, rewind, forward, etc.) when lenses

are on top.

4 4,2

6. The colored squares in the border of a video provides

a clear visualization of the lenses op top.

3 3

7. Lenses in an AND-relation are very useful to find

videos containing multiple persons.

4 4

8. The gesture to create an AND-relation is easy to

learn.

2 2,6

9. The gesture to break the AND-relation is easy to

learn.

4 4

10. Displaying two persons in one lens provide a clear

visualization for an AND-relation.

5 4,6

11. It is a great visualization to obscure videos that do

not contain results.

4 4

Table 7.2: Detailed report of the questionnaire.

7.3 Findings and Results 70

Figure 7.1: A barchart of the results of the questionnaire (The statements can

be found in table 7.2).

tool is already integrated in the application. This tool is described in

section 3.1.2 and provides a fast way to align an arbitrary number of

objects in the application. Unfortunately this functionality was not

tested because the focus was entirely on magic lenses.

� When lenses overlap each other, it is not clear which lens is on top.

� Due to the fact that it is not clear which lens is on top, performing a

three-finger gesture to create an AND-relation is very difficult. More

specifically, it is very difficult to perform this gesture when one lens

entirely overlaps the other. In this situation, the user can only reach

the overlapping lens and therefore she performs the three-finger gesture

on just one lens. Furthermore, when the lenses are separated, some

participants tried to make this gesture with one hand. Others used

both hands to click on the two lenses, as a result they had no hand left

to move the slider. In both situations the user could not complete the

gesture.

7.3 Findings and Results 71

� Some participants thought that the colored squares in the border of a

video represented the persons for which the video contains fragments.

Once they noticed that these squares represented the lenses on top,

they found this representation very useful to determine which lens is

on top or behind the video.

7.3.3 Overall Results

Based on the result of the questionnaire and the findings during the obser-

vation of the test users, a list of essential pros and cons can be provided:

Pros:

� Using the basic functionalities of videos when lenses are on top is intu-

itive.

� The objective of lenses (finding fragments and moving them above the

videos) is clear.

� Highlighting frames in a different color for each person is very useful.

� Visualizing an AND-relation in a compound lens is logical.

� The gesture to break an AND-relation is easy to learn.

Cons:

� The depth of the lenses are difficult to notice in many cases because the

lenses are transparent. This causes frustration among the users when

they manipulate an unintended lens.

� It is difficult to perform a three-finger gesture such as creating an AND-

relation.

� The colored squares do not clearly represent the lenses on top of a

video.

FUTURE WORK 72

Chapter 8

Future Work

Results of the usability test are very crucial for improvements to the applica-

tion. Therefore this chapter provides recommended changes and justifications

driven by the participant success rate, behaviors, and comments discussed in

section 7.3. Furthermore, some general suggestions for future work related

to magic lenses will be provided.

8.1 More Types of Lenses

The current version of the application supports only lenses representing a

person. Nevertheless, other lenses could be created, for example:

� A lens that visualizes all stories in a video (parts of a video that treats

about the same content).

� A lens for visualizing the subtitles of a video.

� Lenses that visualize the existence of specific words in a video.

� Lenses for visualizing the occurrence of specific events in a video.

8.2 Dept of the lenses 73

8.2 Dept of the lenses

Many participants in the usability test had a problem with the lack of visu-

alizations indicating the dept of the lenses (see section 7.3.2). To improve

this feedback the frame-border of a lens can be filled with the same color as

the color linked to the person it represents. Possibly, the overlap of lenses

can be made even more visible by enlarging the colored border of each lens

(see figure 8.1).

Section 5.5 described a solution for the dept problem of the lenses in

which the border color of the lens was changed when the user is touching it.

During the usability test nobody noticed this change in color because a lens

can be very large (to cover many videos). In this case, the users do not focus

on the border but rather on the videos inside the lens. The responsiveness

of the system can be improved by providing a color overlay when the user is

interacting with a lens (see figure 8.2).

8.3 Visualizing lenses on top of a video

The improvement in the spacial character of the lenses described in section

8.2 can help to detect the ordering of lenses towards a video if this lens

intersects the video. In contrast, when a lens entirely overlaps a video, the

colored squares in the border of this video are intended to visualize the lenses

on top (see section 5.5). This feedback is very essential because the user can

determine at a glance if a lens is on top or behind a video. As a result there

is no doubt about whether the video has no results or the lens does not affect

the video.

Results of the usability test showed that it is not clear for many users

if the colored squares represent the lenses on top or the lenses for which a

video contains results. Therefore, a visualization in these squares can be

provided to indicate if the video contains a result for the lens (see figure 8.3).

Consequently, the user will experience that all lenses on top of a video are

visualized as a colored square in the video.

8.3 Visualizing lenses on top of a video 74

Figure 8.1: Improving the visualization of the dept of the lenses from the current

situation (a) to situation (b).

Figure 8.2: Improving the visualization of the dept of the lenses with a color

overlay.

8.4 Creating an AND-relation 75

Figure 8.3: Improvements for visualizing the lenses on top of a video.

8.4 Creating an AND-relation

On the one hand, because the dept of the lenses was not clear, it was not

easy for the test users to create an AND-relation between lenses. On the

other hand, performing a three-finger gesture appears to be a very difficult

task because it can only be completed when using both hands. In contrast,

the usability test shows that the visualization of an AND-relation in a com-

pound lens is very intuitive. Therefore the original tree-finger gesture can be

replaced with a gesture that represents a composition, for example, dragging

the images in the lenses on top of each other. Furthermore, this gesture is

more consistent with the gesture that breaks an AND-relation (see figure

5.10).

8.5 Improving the Visualization of Relations 76

8.5 Improving the Visualization of Relations

Based on the experiences obtained during this work, I would recommend to

visualize both AND and OR-relations between lenses in a compound lens.

Due to the fact that there is a spacial connection between lenses in a com-

pound lens, the relation will be represented more clearly. Furthermore, this

improvement provides a more consistent visualization for the AND and OR-

relation. Switching between these two relation types can be achieved with a

sliding widget in the compound lens (see figure 8.4).

To make a distinction between separated lenses and lenses in an OR-

relation in this improvement, I suggest to visualize only the results for the

query created by the compound lens and to remove the visualization of frag-

ments in this case (see figure 8.4). In the initial version of the application,

query results of compound queries are only entire videos. Accordingly, com-

plex queries on different levels can be supported (see section 8.6).

8.6 Filtering on different levels

In this work, moving a compound lens over a video results in a visualization

of the same frames as moving all these lenses separately over this video. As

a result, the relation type (AND or OR) has no effect on the visualization of

frames. In contrast, switching the relation type can affect the visualization

of the media player frame if the video contains relevant fragments.

Actually, the relations in this thesis only support queries to retrieve entire

videos. Accordingly, these relations can be extended to support queries on

three different levels: to retrieve relevant videos (current situation), stories

or frames. To support these kind of queries more events need to be detected

in the archive so the occurrence of more events in one story or even one frame

are more likely. This will open up new possibilities to support queries for

retrieving much more precise results, for example:

� Retrieving all frames containing George Bush in a car.

8.6 Filtering on different levels 77

Figure 8.4: Finding videos containing fragments of a car AND David Cameron.

� Retrieving all stories containing the army and Hillary Clinton.

To switch the level (videos, stories or frames) on which a compound lens

is filtering data, a sliding widget in the lens can be provided (see figures

8.4, 8.5 and 8.6). Since separate lenses no longer represent an OR-relation

(see section 8.5), stacking lenses on a video will result in an execution of

independent queries as well as an independent visualization of their results

(see figure 8.7).

8.6 Filtering on different levels 78

Figure 8.5: Finding stories containing fragments of a car AND David Cameron.

Figure 8.6: Finding frames containing a car AND David Cameron.

8.6 Filtering on different levels 79

Figure 8.7: Multiple lenses stacked on top of each other results in an execution

of independent queries.

CONCLUSION 80

Chapter 9

Conclusion

In this thesis an application is created to demonstrate the possibilities of

lenses for analyzing video data. Not only the advantages when using lenses

are revealed but also the problems when interacting with lenses are identi-

fied. Furthermore, a media player is created to support the right widgets for

visualizing the occurrence of interested events in time. On top of that, some

advanced features are implemented such as relations between lenses to speed

up the process of finding results for more complex queries.

The application is implemented on an FTIR multi-touch screen to support

a natural interaction with the application. First of all, this technology is

compared to other optical based technologies to determine the possibilities.

Later in this work, an overview of the detection and processing of the multi-

touch input points is provided. A couple of other steps were added to this

chain to provide the detection of events on specific objects in a program.

Multi-touch platforms bring new challenges such as input feedback ambi-

guities and problems when more users are interacting with the same surface.

These problems are analyzed and solutions are provided. Furthermore, some

direct and symbolic gestures are created to make the interaction more nat-

ural. These gestures can replace static icons in traditional interfaces and

therefore support multiple users to work with the system at the same time.

As a result, a robust layer is added to the input system to support an arbi-

trary number of gestures.

CONCLUSION 81

Finally, a usability test delivered great feedback about the interaction

with the lenses. The pro and cons of the magic lenses could be clearly

identified. Even improvements are provided to make the interaction more

intuitive and easier.

CONCLUSION 82

Samenvatting (Dutch

Summary)

Tegenwoordig zijn er veel video’s beschikbaar door de opkomst van webcams,

beveiligingssystemen, het internet, televisie opnames, etc. Het vinden van

fragmenten in dit grote aanbod kan zeer moeilijk en tijdrovend zijn. Er

bestaan methoden voor het indexeren van videofragmenten maar dit levert

nog steeds een grote hoeveelheid data op waar de persoon zelf mee overweg

moet kunnen. Het introduceren van interactieve tools in programma’s voor

het analyseren van video’s kan het zoekproces naar fragmenten versnellen.

In deze bachelorproef zal onder andere onderzocht worden hoe magic lenses

gebruikt kunnen worden om fragmenten te zoeken in een grote hoeveelheid

video data.

Magic lenses (zie hoofdstuk 5) zijn semi-transparante User Interface el-

ementen die onderliggende data op een snelle en intüıtieve manier kunnen

visualiseren. In onze applicatie zal elke lens een bepaalde persoon voorstellen.

Wanneer de lens over een video geplaatst wordt, zullen de fragmenten waarin

deze persoon voorkomt, opgelicht worden. Om complexere zoekopdrachten

te vergemakkelijken, zoals het zoeken naar meerdere personen, kunnen er

relaties gemaakt worden tussen de verschillende lenzen.

Het zoeken naar gewenste fragmenten in een video moet op een snelle

mannier gebeuren. Gebruikers mogen immers geen vertraging ondervinden

bij het verplaatsen van een lens. Om het detecteren van fragmenten te ver-

snellen wordt daarom het AMASS++ videoarchief (zie hoofdstuk 4) gebruikt.

Dit archief bevat gedetailleerde informatie over een heel aantal BBC nieuws-

CONCLUSION 83

opnames en is voornamelijk gespecialiseerd in het herkennen van gezichten

in video’s.

Het grote voordeel bij het gebruik van magic lenses is dat de tool fysiek

over de inhoud van het programma geplaatst kan worden een toolbar die alle

tools verzamelt is dus overbodig. Dit heeft als gevolg dat de aandacht van de

gebruiker volledig op de inhoud van de applicatie gericht kan zijn. Wanneer

ervoor gezorgd kan worden dat gebruikers de lenzen en andere objecten direct

kunnen manipuleren in plaats van het gebruik van een traditionele muis

en toetsenbord zal de gebruiker zich volledig kunnen concentreren op het

werkvlak. Dit kan uiteindelijk leiden tot een zeer intüıtieve interactie. De

applicatie zal daarom gëımplementeerd worden op een Multi-touch tafel (zie

hoofdstuk 2).

Multi-touch interfaces brengen enkele nieuwe interactie technieken met

zich mee zoals bijvoorbeeld het gebruik van gestures en het ondersteunen van

meerdere gebruikers die samenwerken op eenzelfde tafel. Bovendien moeten

er in multi-touch applicaties extra visualisaties voorzien worden om bijvoor-

beeld feedback te geven over input punten. In Hoofdstuk 3 zal uitvoerig

besproken worden welke elementen voorzien zijn in de applicatie om een

intüıtieve interactie te verkrijgen.

Al deze elementen zullen gëıntegreerd worden in een programma waarmee

video’s geanalyseerd kunnen worden op een multi-touch tafel. Tenslotte

zullen gebruikerstesten de positieve en negatieve kanten van de applicatie

aan het licht brengen (zie hoofdstuk 7).

USABILITY TEST: INSTRUCTION DOCUMENT (IN DUTCH) 84

Appendix A

Usability Test: Instruction

Document (in Dutch)

A.1 Inleiding

Deze gebruikerstest speelt zich af binnen het kader van mijn bachelor thesis.

In deze thesis wordt er voornamelijk onderzocht hoe er op een snelle en

gemakkelijke manier videofragmenten uit een grote hoeveelheid video data

gezocht kan worden.

Het zoeken naar fragmenten gebeurt met behulp van magic lenses. Deze

semi-transparante tools stellen elk een persoon voor, en maken het mogelijk

fragmenten te filteren waarin de desbetreffende persoon voorkomt.

De applicatie ondersteunt momenteel een klein BBC archief van volledige

nieuwsuitzendingen en is beschikbaar op een multi-touch tafel.

A.2 Verloop van de test

Allereerst zal een handleiding over het gebruik van de applicatie gegeven

worden aan de hand van een video. Bij het bekijken van deze video zullen

regelmatig pauzes ingelast worden zodat je de verrichte handelingen zelf kan

uitvoeren op de multi-touch tafel.

A.3 Taken 85

Vervolgens zal je gevraagd worden 2 taken uit te voeren die gelijkaardig

zijn aan de voorbeeldjes uit de video.

Tenslotte kan je je mening geven over deze applicatie aan de hand van

een vragenlijst.

A.3 Taken

Taak 1

In hoeveel video’s komen Gordon Brown EN Nicolas Sarkozy EN Morgan

Tsvangirai voor? Speel een fragment van Nicolas Sarkozy af.

Taak 2

Verbreek de AND-relatie tussen de lenses uit taak 1 en ga na in hoeveel

video’s fragmenten van Gordon Brown OF Nicolas Sarkozy voorkomen.

A.4 Vragenlijst

� Algemene informatie:

Geslacht: M / V

Leeftijd:

� Het doel van de lenses (visualiseren van gevonden fragmenten) is duidelijk.

Volledig niet akkoord 1 2 3 4 5 Volledig akkoord

� Het gebruik van lenses voor het zoeken naar fragmenten vind ik zeer

nuttig.

Volledig niet akkoord 1 2 3 4 5 Volledig akkoord

A.4 Vragenlijst 86

� Het is duidelijk dat lenses over een video geplaatst moeten worden om

resultaten zichtbaar te maken.

Volledig niet akkoord 1 2 3 4 5 Volledig akkoord

� Het gebruik van kleuren bij het visualiseren van fragmenten vind ik

duidelijk.

Volledig niet akkoord 1 2 3 4 5 Volledig akkoord

Opmerkingen: ...

...

...

� Ik vind het zeer intüıtief dat de functionaliteiten van de media player

(afspelen, pauzeren, terugspoelen, vooruitspoelen) bediend kunnen wor-

den wanneer er zich lenses over de video bevinden

Volledig niet akkoord 1 2 3 4 5 Volledig akkoord

� De gekleurde rechthoekjes in de linkerbovenhoek van een video (zie

afbeelding A.1) visualiseren op een duidelijke manier de lenses die zich

bovenop de video bevinden.

Volledig niet akkoord 1 2 3 4 5 Volledig akkoord

Opmerkingen: ...

...

...

A.4 Vragenlijst 87

Figure A.1: Het visualiseren van lenses die zich bovenop de video bevinden.

� Het gebruik van AND-relaties tussen de lenses vergemakkelijkt het

zoekproces naar video’s waarin meerdere personen voorkomen.

Volledig niet akkoord 1 2 3 4 5 Volledig akkoord

Opmerkingen: ...

...

...

� De gesture voor het definiëren van een AND-relatie, was gemakkelijk

aan te leren.

Volledig niet akkoord 1 2 3 4 5 Volledig akkoord

� De gesture om lenses terug in een OR-relatie te brengen was gemakke-

lijk aan te leren.

Volledig niet akkoord 1 2 3 4 5 Volledig akkoord

� Het samenvoegen van lenses is een duidelijke manier voor het weergeven

van een AND-relatie.

Volledig niet akkoord 1 2 3 4 5 Volledig akkoord

A.4 Vragenlijst 88

� Het minder zichtbaar worden van video’s is een duidelijke manier om

video’s aan te duiden die geen resultaten voor de zoekopdracht bevat-

ten.

Volledig niet akkoord 1 2 3 4 5 Volledig akkoord

HARTELIJK DANK VOOR UW MEDEWERKING!

BIBLIOGRAPHY 89

Bibliography

[1] SBO Program of the IWT. Advanced multimedia

alignment and structured summarization (amass++).

http://www.cs.kuleuven.be/~liir/projects/amass/, Last visited:

May 04, 2010.

[2] T. Tuytelaars S. Martens, J. H. Becker and M.F. Moens. Multimodal

Data Collection in the AMASS++project. Katholieke Universiteit Leu-

ven, Belgium, 2008.

[3] Microsoft Research Bill Buxton. Multi-touch sys-

tems that i have known and loved, jan 2007.

http://www.billbuxton.com/multitouchOverview.html, Last

visited: May 10, 2010.

[4] Microsoft Windows Presentation Foundation. Data binding overview.

http://msdn.microsoft.com/en-us/library/ms752347.aspx, Last

visited: May 09, 2010.

[5] Pierre Wellner. The digitaldesk calculator: tangible manipulation on

a desk top display. In UIST ’91: Proceedings of the 4th annual ACM

symposium on User interface software and technology, pages 27–33, New

York, NY, USA, 1991. ACM.

[6] Kathy Ryall, Clifton Forlines, Chia Shen, Meredith Ringel Morris, and

Katherine Everitt. Experiences with and observations of direct-touch

tabletops. In TABLETOP ’06: Proceedings of the First IEEE Interna-

tional Workshop on Horizontal Interactive Human-Computer Systems,

pages 89–96, Washington, DC, USA, 2006. IEEE Computer Society.

BIBLIOGRAPHY 90

[7] Enrico Costanza and John Robinson. A region adjacency tree approach

to the detection and design of fiducials. In VVG, pages 63–69, 2003.

[8] N. Metha. A Flexible Machine Interface. M.A.Sc. Thesds, Department

of Electrical Engineering, University of Toronto., 1982.

[9] the free encyclopedia Wikipedia. Infrared.

http://en.wikipedia.org/wiki/Infrared, Last visited: April

10, 2010.

[10] the free encyclopedia Wikipedia. Apple iphone.

http://en.wikipedia.org/wiki/Apple iPhone, Last visited: April

15, 2010.

[11] Ralph Hill William Buxton and Peter Rowley. Issues and techniques

in touch-sensitive tablet input. In SIGGRAPH ’85: Proceedings of the

12th annual conference on Computer graphics and interactive techniques,

pages 215–224. ACM Press, 1885.

[12] Jefferson Y. Han. Low-cost multi-touch sensing through frustrated total

internal reflection. In UIST ’05: Proceedings of the 18th annual ACM

symposium on User interface software and technology, pages 115–118,

New York, NY, USA, 2005. ACM.

[13] the free encyclopedia Wikipedia. Heideggerian terminology.

http://en.wikipedia.org/wiki/Heideggerian terminology, Last

visited: May 08, 2010.

[14] Microsoft .NET. http://www.microsoft.com/net/.

[15] the free encyclopedia Wikipedia. .net framework.

http://en.wikipedia.org/wiki/Net Framework, Last visited:

May 09, 2010.

[16] Daniel Wigdor, Sarah Williams, Michael Cronin, Robert Levy, Katie

White, Maxim Mazeev, and Hrvoje Benko. Ripples: utilizing per-

contact visualizations to improve user interaction with touch displays.

In UIST ’09: Proceedings of the 22nd annual ACM symposium on User

BIBLIOGRAPHY 91

interface software and technology, pages 3–12, New York, NY, USA,

2009. ACM.

[17] Microsoft. Microsoft surface. http://www.microsoft.com/surface/en/

us/default.aspx, Last visited: May 02, 2010.

[18] Microsoft. Windows presentation foundation.

http://windowsclient.net/wpf/, Last visited: May 09, 2010.

[19] Johannes Schöning, Jonathan Hook, Tom Bartindale, Dominik Schmidt,

Patrick Oliver, Florian Echtler, Nima Motamedi, and Peter Brandl.

Building interactive multi-touch surfaces. journal of graphics, gpu, and

game tools, 14(3):35–55, 2009.

[20] Johannes Schöning, Peter Brandl, Florian Daiber, Florian Echtler, Ot-

mar Hilliges, Jonathan Hook, Markus Löchtefeld, Nima Motamedi, Lau-

rence Muller, Patrick Olivier, Tim Roth, and Ulrich von Zadow. Multi-

touch surfaces: A technical guide. techreport, Institute for Geoinfor-

matics University of MÃ¼nster, 2008.

[21] Tom Cuypers, Jan Schneider, Johannes Taelman, Kris Luyten, and

Philippe Bekaert. Eunomia: toward a framework for multi-touch in-

formation displays in public spaces. In BCS-HCI ’08: Proceedings of

the 22nd British CHI Group Annual Conference on HCI 2008, pages

31–34, Swinton, UK, UK, 2008. British Computer Society.

[22] Don Norman. Natural user interfaces are

not natural. http://www.jnd.org/dn.mss/

natural user interfaces are not natural.html, Last visited:

May 29, 2010.

[23] Leonard R. Kasday. Touch position sensitive surface, 1984.

http://www.google.com/patents?vid=USPAT4484179.

[24] James B. Mallos. Touch position sensitive surface, 1982.

http://www.google.com/patents?vid=USPAT4346376.

BIBLIOGRAPHY 92

[25] Robert E. Mueller. Direct television drawing and image manipulation

system, 1974. http://www.google.com/patents?vid=USPAT3846826.

[26] Ken Fishkin and Maureen C. Stone. Enhanced dynamic queries via

movable filters. In CHI ’95: Proceedings of the SIGCHI conference on

Human factors in computing systems, pages 415–420, New York, NY,

USA, 1995. ACM Press/Addison-Wesley Publishing Co.

[27] C. Stone E. A. Bier, W. Buxton K. Pier, and T. D. DeRose. Toolglass

and Magic Lenses: The see-Through Interface. University of Toronto,

University of Washington, Xerox PARC, 3333 Coyote Hill Road, Palo

Alto, CA 94304, 2003.

[28] Kai-Yin Cheng, Sheng-Jie Luo, Bing-Yu Chen, and Hao-Hua Chu.

Smartplayer: user-centric video fast-forwarding. In CHI ’09: Proceed-

ings of the 27th international conference on Human factors in computing

systems, pages 789–798, New York, NY, USA, 2009. ACM.

[29] the free encyclopedia Wikipedia. Microsoft surface.

http://en.wikipedia.org/wiki/Microsoft Surface, Last visited:

April 20, 2010.

[30] the free encyclopedia Wikipedia. Frustrated total internal reflec-

tion. http://en.wikipedia.org/wiki/Total internal reflection,

Last visited: April 13, 2010.

[31] NUI Group. http://nuigroup.com/touchlib/, Last visited: April 22,

2010.

[32] NUI Group. http://wiki.nuigroup.com/FTIR, Last visited: April 22,

2010.

[33] Andrew D. Wilson. Touchlight: an imaging touch screen and display

for gesture-based interaction. In ICMI ’04: Proceedings of the 6th inter-

national conference on Multimodal interfaces, pages 69–76, New York,

NY, USA, 2004. ACM.

BIBLIOGRAPHY 93

[34] K. Coninx M. Haesen, J. Meskens. Visualising Digital Video Libraries

for TV Broadcasting Industry: A User-Centred Approach. Expertise

Centre for Digital Media, Belgium, 2009.

[35] the free encyclopedia Wikipedia. Windows presentation foundation.

http://en.wikipedia.org/wiki/Windows Presentation Foundation,

Last visited: May 09, 2010.

[36] Microsoft. Xaml overview. http://msdn.microsoft.com/en-us/library/

ms752059.aspx, Last visited: May 09, 2010.

[37] the free encyclopedia Wikipedia. Extensible application markup lan-

guage. http://en.wikipedia.org/wiki/XAML, Last visited: May 09,

2010.

LIST OF FIGURES 94

List of Figures

2.1 Some very important points in the technical evolution of the

touch technology. 5

2.2 The use of mirrors to reduce the distance between the projec-

tor and the projection surface [20]. 8

2.3 The bare minimum parts needed for a FTIR setup [32]. 10

2.4 FTIR schematic diagram depicting some improvements to in-

crease touch sensitivity [20]. 11

2.5 General setup of a Rear-side illumination system [19]. 12

2.6 General setup of a Front-side illumination system [19]. 13

2.7 Advantages and disadvantages of FTIR, Rear DI and Front

DI compared to each other. 15

3.1 The multi-touch video analysis application. 19

3.2 Selecting multiple objects(a), (b) and organizing all these ob-

jects(c). 21

3.3 Popping up a menu(a),(b) and add a video(c). 23

3.4 Scrolling through content by performing a natural move gesture. 25

3.5 Touch-points states and transitions. 0: not yet touching 1:

stationary contact [16]. 28

3.6 Two animations are shown for transition A. If an object is cap-

tured, a circle shrinks around the contact. If not, it splashes

outward. 30

3.7 Transistion B: emphasizing the point/finger mapping to ad-

dress the fat finger problem. 30

LIST OF FIGURES 95

3.8 Touch-points states and transitions. 1: stationary contact 2:

moving contact [16]. 30

3.9 Two visualizations are shown for state 2. If an object is cap-

tured, a short trail is displayed behind the finger while moving.

If not, the full path will be visualized. 32

4.1 An example of the subtitles in a story in the AMASS++ archive. 35

4.2 In memory data structure of the annotated AMASS++ data. . 37

5.1 Curvature pseudo-color lens with overlaid tool to read the nu-

meric value of the curvature [27]. 39

5.2 A color toolglass applies its style to an underlying part of a

circle by clicking through the fill-color button [27]. 39

5.3 All cities with high salaries OR low taxes are highlighted as a

result of two disjunctive lenses [26]. 40

5.4 A Media player with a specialized timeline widget to integrate

query results. 44

5.5 The Morgan Tsvangirai lens entirely overlaps the timeline, the

Barack Obama lens partially overlaps the timeline. 44

5.6 The Morgan Tsvangirai and Barack Obama lenses both over-

lapping the timeline. 45

5.7 Highlighting all frames containing Robert Mugabe OR Alas-

tair Yates. 47

5.8 Switching the relation type between two lenses to an AND-

relation by performing a three-finger gesture. 48

5.9 Highlighting all frames containing Robert Mugabe AND Alas-

tair Yates. 49

5.10 Switching the relation type between two lenses to an OR-

relation. 50

5.11 The Push to front button and Push to background button are

positioned at the right side of the video. Two squares repre-

senting the lenses on top of the video are located on the left

side of the video. 51

6.1 The Model-View-ViewModel pattern. 55

LIST OF FIGURES 96

6.2 Basic data structure of a video. (Figure 4.2 shows the full

class diagram of the AMASS++ MediaStream). 58

6.3 The basic input architecture of the application. 60

6.4 Mapping of recognized events to events on objects. 62

7.1 A barchart of the results of the questionnaire (The statements

can be found in table 7.2). 70

8.1 Improving the visualization of the dept of the lenses from the

current situation (a) to situation (b). 74

8.2 Improving the visualization of the dept of the lenses with a

color overlay. 74

8.3 Improvements for visualizing the lenses on top of a video. . . . 75

8.4 Finding videos containing fragments of a car AND David Cameron. 77

8.5 Finding stories containing fragments of a car AND David

Cameron. 78

8.6 Finding frames containing a car AND David Cameron. 78

8.7 Multiple lenses stacked on top of each other results in an ex-

ecution of independent queries. 79

A.1 Het visualiseren van lenses die zich bovenop de video bevinden. 87

LIST OF TABLES 97

List of Tables

7.1 Age range of the participants. 66

7.2 Detailed report of the questionnaire. 69

	Acknowledgments
	Summary
	Contents
	Introduction
	Purpose of this Thesis
	Overview of this Thesis

	Multi-touch Displays
	History
	Analysis of a Multi-Touch Display
	Light Sources
	Optical Sensors
	Visual Feedback

	Optical Multi-touch Technologies
	Frustrated Total Internal Reflection (FTIR)
	Diffused Illumination (DI)
	Technique Comparison

	Multi-touch detection and processing
	Touchlib
	FTIRCap

	Multi-touch User Experience
	Gestures
	Direct Gestures
	Symbolic Gestures
	Gestures and Multi-User Aspects
	Problems using gestures

	Input visualization techniques
	Touch Feedback Ambiguity Problem
	Input Visualization

	AMASS++ Archive
	AMASS++ Summarized Data
	Summarization Constraints

	Parsing The Summarized Data

	Magic Lenses
	The Magic Lens Concept
	Magic lenses and Data Filtering
	Advantages of Magic Lenses
	Magic Lenses for Visualising Video Data
	Searching for Fragments
	Searching for Videos

	Interacting with Magic Lenses

	Implementation
	Technologies
	.NET/C#
	WPF/XAML

	Data Structure
	Model-View-ViewModel pattern
	Handling Input

	Implementing Lenses

	Usability Tests
	The purpose
	Methodology
	The Procedure
	Participants
	Introduction
	Tasks

	Findings and Results
	Results of the questionnaire
	Findings
	Overall Results

	Future Work
	More Types of Lenses
	Dept of the lenses
	Visualizing lenses on top of a video
	Creating an AND-relation
	Improving the Visualization of Relations
	Filtering on different levels

	Conclusion
	Samenvatting (Dutch Summary)
	Usability Test: Instruction Document (in Dutch)
	Inleiding
	Verloop van de test
	Taken
	Vragenlijst

	Bibliography
	List of Figures
	List of Tables

