
PaperPulse: An Integrated Approach for Embedding
Electronics in Paper Designs

Raf Ramakers Kashyap Todi Kris Luyten
Hasselt University - tUL - iMinds
Expertise Centre for Digital Media

Diepenbeek, Belgium
firstname.lastname@uhasselt.be

ABSTRACT
We present PaperPulse, a design and fabrication approach
that enables designers without a technical background to pro
duce standalone interactive paper artifacts by augmenting
them with electronics. With PaperPulse, designers overlay
pre-designed visual elements with widgets available in our
design tool. PaperPulse provides designers with three fami
lies of widgets designed for smooth integration with paper,
for an overall of 20 different interactive components. We
also contribute a logic demonstration and recording approach,
Pulsation, that allows for specifying functional relationships
between widgets. Using the final design and the recorded
Pulsation logic, PaperPulse generates layered electronic cir
cuit designs, and code that can be deployed on a microcon
troller. By following automatically generated assembly in
structions, designers can seamlessly integrate the microcon
troller and widgets in the final paper artifact.
Author Keywords: Paper electronics; Paper-crafts; Fabrica
tion; Design Tools; PBD; Tangible Interfaces
ACM Classification Keywords: H.5.2 [Information inter
faces and presentation]: User Interfaces

INTRODUCTION
Recently, there has been a growing interest in different fields
and communities (e.g. research, maker movement, engineer
ing and marketing) in making paper interactive by augment
ing it with electronics. This makes it possible to produce low-
cost paper versions of PCBs in lab environments [18] and
bring liveness to paper artifacts such as books [24, 23] and
posters [28]. Although advancements in fabrication tools for
electronic circuits, such as conductive pens, threads, inkjet
printers [18] and vinyl cutters [26] make it accessible for
many people to build these paper circuits, a vast majority
lacks expertise in electronics and programming to make paper
interactive using electronic circuits.

To make electronics available for designers, construction kits
targeting programmers, such as .net gadgeteer [14] or Phid
gets [10], or non-programmers, such as littleBits [3] pro-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
CHI 2015, April 18 - 23 2015, Seoul, Republic of Korea
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3145-6/15/04..$15.00.
http://dx.doi.org/10.1145/2702123.2702487

Canvas

Widget
Toolbox

a

b

d e

c

ConfirmIf

Event Sequence 1

Event Sequence 2

If

Then
Map...To...If...Then...

(Use existing recording) (Use existing recording) Auto Undo

EXECUTE

Then

Event Sequence 3

Event Sequence 4

If

EXECUTE

Then

Show Recorded EventsPrint DesignInsert Image SimulateSaveOpenPage Setup

Push Buttons

Switches

grab now

go

Buzzer
LED 4

Button

Switch

LEDs

grab the banana

ExecuteRecord Record

Logic Recorder

Recorded
Logic

If...Then... Map...To...

Figure 1. The PaperPulse workflow streamlines the entire process of cre
ating interactive paper artifacts. (a) Design and specify logic; (b) print
sheets; (c) assemble; (d) upload generated program to microcontroller;
(e) final paper artifact.

vide modules to rapidly build hardware prototypes. However,
these kits are often bulky and expensive. Thus, for instance,
it is not feasible to create interactive greeting cards that can
be handed out, or games that are seamlessly integrated into
paper, like the one illustrated in Figure 1e. In a similar vein,
design tools, such as Midas [26], d.tools [13], Examplar [12]
or Boxes [17] make it easier for designers to link sensor data
to application logic through programming by demonstration.
However, these tools require users to have some exposure to
programming languages. Additionally, they do not allow for
standalone systems since they assume hardware sensors to be
connected to a desktop computer at all times.

http://dx.doi.org/10.1145/2702123.2702487
mailto:raf.ramakers@uhasselt.be,kashyap.todi@uhasselt.be,kris.luyten@uhasselt.be
mailto:Permissions@acm.org

While circuit building and programming skills can be ac
quired by non-experts through workshops and tutorials [24,
21], adding electronic circuits to paper is not yet as conve
nient as adding visual designs on paper with common graph
ical software tools, such as Illustrator or InDesign.

To enable designers to augment paper designs with electron
ics, we present PaperPulse, a design tool that assists and au
tomates parts of the design, programming and fabrication of
electronic paper circuits. With PaperPulse, users make stan
dalone interactive paper artifacts in which electronic compo
nents are seamlessly integrated in visual designs.

PAPERPULSE
PaperPulse enables designers without a technical background
to make traditional designs on paper interactive by seamlessly
integrating I/O components and microcontrollers. We believe
that these components will soon become cheap enough to en
rich every paper design, from books, posters, and business
cards to ephemeral packaging material and flyers.

Figure 1 shows how PaperPulse streamlines the design and
fabrication process of interactive paper artifacts. (a) The user
adds interactive elements (e.g. push buttons, sliders, LEDs,
microphones) to the visual design and specifies the logic be
tween components by demonstration. (b) PaperPulse gener
ates different layers, consisting of visual elements and elec
tronic circuits printed using an inkjet printer filled with con
ductive ink [18]. (c) By following step-by-step instructions,
the user assembles the different parts. (d) Next, PaperPulse
generates code that can be directly uploaded to the microcon
troller attached to the paper. (e) The design can now be used
as a standalone interactive artifact.

PaperPulse Essentials
Although electronic circuits generated with PaperPulse can
be fabricated using various techniques (e.g. a conductive pen,
vinyl cutter), the circuits are optimized for printing on resin
coated paper using a conductive inkjet printer [18]. To final
ize the printed circuit, electronic components, such as resis
tors, buttons, switches, and LEDs, are attached using ECATT
tape1 or conductive paint. PaperPulse supports both Net
duino2 and Threadneedle3 microcontrollers. Pins on the Net
duino connect to paper circuits using bulldog clips. In con
trast, Threadneedle exposes flat connection pins that seam
lessly connect to the circuit printed on paper (Figure 1d).

Walkthrough: The Hungry Monkey Game
The following walkthrough illustrates the process of design
ing and fabricating a paper game with PaperPulse (Figure 1).
The game consists of a loop of six LEDs that consecutively
turn on and off. The objective of the game is to “grab the ba
nana” by pressing a button at the moment when a particular
LED lights up. A buzzer rings for a short duration each time
the player succeeds in doing so.

1Electrically Conductive Adhesive Transfer Tape
2www.netduino.com
3modlab.co.uk

Step 1: Designing the Interactive Paper Layout
The designer starts by specifying the dimensions of the paper
design. PaperPulse then allows to import pre-designed visual
elements (i.e. images) and to arrange them onto the canvas
(Figure 1a). Next, the designer overlays the design with in
teractive components (six LEDs, a buzzer, a pull switch, and
a button), available in the widget toolbox (Figure 1a). To give
designers a better idea of the look and feel of different com
ponents, tooltips with video previews [11] are available in the
widget toolbox.

Step 2: Defining and Verifying Logic Iteratively
Figure 2 illustrates how the designer links the switch to the
loop of LEDs, to start the game: (a) The designer starts a
new input recording in the if -part of the logic recorder. (b)
She demonstrates the switch changing to the ‘on’ state using
the widgets on the canvas. (c) The designer then starts a new
output recording in the then-part of the logic recorder. (d)
She demonstrates the blinking pattern of the LEDs by turn
ing their brightness consecutively to 100% and back to 0%.
(e) Next, the designer specifies the timing for these recorded
actions by setting them to occur at intervals of 0.3 seconds.
She also specifies the looping behavior by setting the loop
option to Infinite. (f) When the if–then rule is confirmed, Pa
perPulse automatically infers the behavior for the off state of
the switch.

grab the bananaSwitch 1

If Then
Map...To...If...Then...

(Use existing recording)Show Recorded EventsPrint DesignSimulate
ExecuteEvent sequence 1

Switch 1 ON

ON

Confirm Cancel

Widget Design Options

OFF

Sequential Exactly Matches

stopgrab the banana

If Then ExecuteEvent sequence 1 Event sequence 2

Brightness LED 1 to: 100 after

Auto Undo
Confirm

0.3 s

s

s

0.6

0.9

after

after

InfiniteLoops:Disable Abs Timing

Brightness LED 1 to: 0

Brightness LED 2 to:100

Confirm

Set LED Brightness to:

LED 1

Input Recording

Demonstrate
Switch ON

a

Timing
and Loops

e

b

Demonstrate
LED Sequence

d

Output Recording Confirm
c f

Figure 2. Recording an if–then rule for the LED sequence when a switch
is turned on.

To verify the recorded rule, the designer starts the simulator
to interact with the widgets and observes the corresponding
output (Figure 4). By observing fulfilled conditions and ex
ecuted actions in the Debug View, the designer can identify
possible mistakes in the recorded rules.

http:3modlab.co.uk
http:2www.netduino.com

Next, the designer records the logic for the “grab now” but
ton. If pressed at the moment the LED under the monkey
(“LED 4”) lights up, the buzzer should ring to indicate that the
game is completed. Figure 3 illustrates the recording of this
behavior: (a) She records the if -part of the logic by demon
strating the button press and turning the brightness of LED 4
to 100%. (b) The recording is fine-tuned by specifying that
the two conditions need to be satisfied simultaneously. (c)
The designer records the then-part of the logic by turning the
volume of the buzzer to the desired intensity. (d) Next, she
specifies the timing of the output action (buzzer ringing) to
ensure that the buzzer stops after two seconds.

Brightness LED 4 equals: 100

Button 1 Press

Volume Buzzer 1 to: 100 after s

s

0

2afterVolume Buzzer 1 to: 0

Simultaneous Exactly Matches

If ThenEvent Sequence 3 Event Sequence 4Execute
Auto Undo
Confirm

Loops: 1Disable Abs Timing

Auto
Undoquence 2

grab thgo If LED 4 is ON and
Button press occurs

Simultaneous

Buzzer rings
Timinga

d

b

c

Figure 3. Recording another rule to ring a buzzer if the button is
pressed at the moment “LED 4” turns on.

Sequential Exactly Matches

Brightness LED 1 to: 100

Show Debug ViewReturn to Editor

Event Sequence 2

Event Sequence 3

Event Sequence 4

Event Sequence 1

after 0.3

Brightness LED 1 to: 0 after 0.6

Brightness LED 2 to: 100 after 0.9

Brightness LED 2 to: 0 after 1.2

Brightness LED 3 to: 100 after 1.5

Brightness LED 3 to: 0 after 1.8

Brightness LED 4 to: 0 after 2.4

Brightness LED 5 to: 100 after 2.7

Brightness LED 5 to: 0 after 3.0

Brightness LED 6 to: 100 after 3.3

Brightness LED 6 to: 0

Volume Buzzer 1 to:100 after 0

Volume Buzzer 1 to: 0 after 2

Button 1 Press

Brightness LED 4 equals: 100

Disable Abs Timing Infinite

after 3.6

Event Sequence 1

Event Sequence 2

If

EXECUTE

Then

Event Sequence 3

Event Sequence 4

If

EXECUTE

Then

grab now

stop

Buzzer 1LED 4

Button 1

Switch 1

grab the banana

Brightness LED 4 to: 100 after 2.1

Switch 2 ON

Press

Is ON

ON

Rings

Debug View

Figure 4. The PaperPulse Simulator enables testing of recorded rules.

Step 3: Printing and Assembly
Once the design is complete, the designer specifies the posi
tion of the microcontroller and verifies that electronic connec
tion pins for the widgets do not overlap. She adjusts widgets
(e.g. position, size or orientation) if necessary.

The printing process starts by generating: (1) An electronic
circuit that connects widgets to pins on the microcontroller
while limiting the number of intersecting circuit traces. (2)
PDF files consisting of the electronic circuits, widget-specific
assembly lines (e.g. cut lines, fold lines), and visual elements.
(3) Microcontroller code. (4) A customized tutorial to guide
the designer through the printing, deployment, and assembly.

Following the tutorial (Figure 5a), the designer is instructed
to print the generated PDF files on three sheets of paper, us
ing a conductive inkjet and a color printer, as required (Fig
ure 5b). She then uses ECATT tape to attach bridges (zero
ohm resistors) at intersecting traces that could not be resolved
by the auto-routing algorithm. The remainder of the tutorial

a b

c d e
Figure 5. Printing and assembling process: (a) instructions generated;
(b) sheets printed (c) circuit and widgets assembled; (d) generated code
uploaded to the microcontroller; (e) the final paper artifact.

provides instructions to cut, fold and glue layers of paper, at
tach electronic components, such as LEDs, resistors, and at
tach the microcontroller and upload the generated code (Fig
ure 5c-d).

As shown in Figure 1e, the resulting end-product can now be
used as a standalone paper game after connecting a battery.

CONTRIBUTION
The primary contribution of this paper is an integrated de
sign and fabrication approach, which we call PaperPulse, that
allows non-expert users to seamlessly integrate electronics in
visual designs on paper. PaperPulse enables this by contribut
ing:

(1) A design tool to integrate electronics in paper designs,
and specify, test, and debug logic between these components.
When fabricating, our tool assists by automatically generat
ing circuits, layers, pages and instructions to help assembling
the final paper artifact.

(2) Pulsation, a demonstration technique to enable non-
programmers to specify logic between basic electronic
sensors. The Pulsation interpreter runs in a simulator
integrated into the design tool and on the supported
microcontrollers.

(3) To get designers started and provide them an overview
of the interactive components suitable for paper, we support
three families of standard interactive widgets, each of which
consist of multiple standard controls, such as push buttons,
switches, sliders and radio buttons for an overall number of
20 different interactive components.

Our evaluation assesses the usability and utility of PaperPulse
for designers.

PAPERPULSE WIDGETS
To provide designers with appropriate widgets, suitable for
their paper designs, we present three families of standard wid
gets to realize basic controls such as push buttons, switches,
sliders, and radio buttons. Each family is unique in its own
way, and provides some strengths to distinguish itself from

a

b

c

Figure 6. The three families of PaperPulse widgets: (a) Off-the-shelf
slider; (b) Paper-membrane slider; (c) Pull-chain slider.

the others. Figure 6 illustrates how each approach realizes a
linear slider.

Design Challenges
Our three families of standard widgets draw inspiration from
the work by Qi and Buechley [23, 24] and Kickables [27].
However, designing reusable widgets that can be printed
turned out to be non-trivial: How can we ensure the con
tinuity of the brittle circuit traces over folding structures?
How can moving parts be powered? How can the firmness be
increased and widgets made durable?

The three widget families consist of a different number of
layers. To allow widgets of all three families to co-exist in
a single design, we devised a uniform layering approach: a
base layer, a widget-specific layers (where needed), and a top
layer. This layering approach is also vital for the seamless in
tegration of electronics and visual elements, since all conduc
tive traces are concealed. Every widget design ensures that
all conductive lines are traced back to the base layer, which is
connected to the microcontroller.

Off-the-Shelf Widgets
PaperPulse currently supports eight off-the-shelf input sen
sors and four output components (Figure 7). Some compo
nents expose flat connection pins on the bottom (SMDs4) and
therefore are attached directly to paper using ECATT-tape.
Components having very small connection pads or regular
connection pins (through-hole components) are first attached
to a custom-built flexible PCB substrate that exposes large
connection pads to the paper circuit, similar to Circuit stick
ers [15]. Alternatively, through-hole components can be ex
tended with crimp terminals.

Although off-the-shelf widgets require only little manual as
sembly, they have a fixed design and often protrude from the
surface. When augmenting paper designs with electronics,
it is often desirable to resize components and integrate them
seamlessly with visual elements on paper. This is accom
plished with paper-membrane and pull-chain widgets.

Paper-Membrane Widgets
Figure 8 shows two paper-membrane widgets. The main de
sign rationale behind paper-membrane widgets is to create an
electronic circuit between the base layer and back of the top
4Surface Mounted Devices

Microphone

Light Sensor

5-Way Radio
Button

Slider Crimp Terminal

Seven-Segment
Display

LED Vibration
Motor

Buzzer

Switch Button

Pressure Sensor

Flex Sensor

Input Components Output Components

Figure 7. The off-the-shelf widgets currently supported by PaperPulse.

layer and separate them with thin air gap using a paper frame
(widget-specific layer) that serves as a spacer (Figure 8a).
Pressing on the top layer connects it to the bottom, closing
the circuit and thus realizing a push button. The top layer is
powered from the base layer by connecting regions Z1 and Z2
using ECATT-tape.

Base Layer

Widget-Specific Layer

Top Layer

3

2

1

3

2

1

Analog

Vcc

2MΩ Resistor

Resistive Strip
(VHS Tape)
Resistive Strip
(VHS Tape)GND Digital

Input

Z-Axis Tape

Z2
Z2

Z1
Z1

Grounda b
Figure 8. Design of paper-membrane widgets: (a) push button (b) slider.

Figure 8b shows the design of a paper-membrane slider in
which the principle of a variable voltage divider is applied
to measure the position where the top (wiper) and base layer
make contact. To increase sensor resolution, the resistive strip
should have a large resistance range. Although resistive strips
can be printed (by reducing the opacity, and hence quantity
of conductive ink) or drawn using graphite [16], we noticed
that due to wear-and-tear the resistance of these strips often
changes at frequently touched spots. For paper-membrane
sliders, we therefore use resistive 8 mm VHS tape5 as sensor
strip, resulting in a more durable paper-membrane slider.

Paper-membrane widgets support radio buttons and switches
by incorporating multiple paper-membrane push buttons in
a single widget with a shared software state. In contrast to
off-the-shelf widgets, paper-membrane widgets are customiz
able. On the other hand, they do not offer tangibility. This is
the essence of pull-chain widgets.

Pull-Chain Widgets
Pull-chain widgets draw inspiration from planar paper pop-
up mechanisms [5]. Similar to off-the-shelf widgets, pull-
chain widgets provide tangibility but at the same time do not
protrude from the surface. Since they are designed entirely
5Several other kinds of tapes could also exhibit linear resistance.

out of paper, pull-chain widgets are customizable and blend
seamlessly into paper designs.

Although pull-strip mechanisms are traditionally used as slid
ing mechanisms [23], we see them as omnivalent pulling
mechanisms in the same way as old-fashioned pull chains
were used to control electrical appliances, such as light bulbs
and fans. Figure 9 shows a pull-chain switch, slider, radio
button and push button (using a crossing interaction tech
nique [1]).

a b c d
Figure 9. Pull-chain widgets supported by PaperPulse: (a) Push-button,
(b) Switch, (c) Radio button, (d) Slider.

The mechanisms used for pull-chain widgets are optimized
for tracking with electronic circuits printed on paper. These
conductive traces are often brittle and cannot span across
folded structures. As shown in Figure 10, the mechanical
design of every pull-chain widget consist of (a) a folded tube
structure with a hollow center to ensure strength and rigid
ity during pulling and pushing motions, (b) slots to guide the
pull-strip, (c) a wing tab to lock the pull-strip in place and
(d) a pull-tab that functions as handle. The pull-strip itself
is interwoven in the top layer. In combination with the tube
structure, this provides sufficient pressure between the pull-
strip and the base layer to ensure electrical connectivity, and
at the same time provides an acceptable amount of friction to
manipulate pull-chain widgets comfortably.

Base Layer

Widget-Specific Layer

Top Layer

3

1

2

Resistive StripResistive Strip

Protruding FlapsProtruding Flaps

 Guides

Wing Tab

Folded
Tube Structure

Pull TabGroundGroundAnalogAnalog
(Wiper)(Wiper)

VccVcc d

a

b

c

Figure 10. Design of pull-chain widgets: The widget-specific layer is
interwoven into the top layer by passing it through four slots. Protrud
ing flaps on the base layer also pass through these slots to ensure con
stant contact between the winding circuit traces on the pull-chain and
the three pin connections on the base layer.

Figure 10 also shows the electrical circuit design specifically
for pull-chain sliders. This consists of an analog sensor strip
(8 mm VHS resistive tape) and winded circuit traces on the
back of the pull-strip. Pull-chain radio buttons use the same
approach but software thresholds are used to realize discrete
states. In contrast, pull-chain push buttons and switches con
sist of conductive patches at specific spots that make an elec
tronic connection when the strips are pushed or pulled. Push
buttons, switches and radio-buttons usually employ mechan
ical detent mechanisms. These techniques however do not
transfer to paper since paper is too fragile. To avoid unde
sired oscillations when widgets are in between states, hys
teresis and timeouts are used in software.

Summary of PaperPulse Widgets
In order to provide designers a wide variety of widgets in
PaperPulse, we presented three families of standard widgets.
As shown in Table 1 each design offers its own strengths and
limitations.

Off-the-Shelf
Widgets

Paper-Membrane
Widgets

Pull-Chain
Widgets

Interaction Style Tangible
√

Touch Tangible
Minimal Assembly – –
Seamless Integration

(Non-Protruding) –
√

√

√

√
Customizable –

Table 1. Strengths and limitations of PaperPulse widget families

We distilled the paper-membrane and pull-chain widget de
signs to their bare minimum to ensure customizability and
reusability. However, we envision more custom designs in
the future, such as sliders with non-straight tracks or even
circular shapes for dial mechanisms (often called wheels or
volvelles in paper craft [5]). The paper-membrane and pull-
chain widgets mainly focus on standard controls, such as push
buttons, switches, sliders and radio buttons since these com
ponents benefit much from customization. However, in the
future we hope to integrate paper versions of other input (e.g.
bend, pressure sensors) and output components (speakers [25,
28], microphones) in PaperPulse.

PULSATION: SPECIFYING SENSOR LOGIC BY DEMON
STRATION
Pulsation allows users to specify logic by demonstrating and
recording actions directly in the context of the visual design
elements. This preserves the WYSIWYG paradigm, which
designers are comfortable with from graphical software tools.
Demonstrating actions in a graphical user interface, however,
is limited to actions that can be defined through the interface
of the tool. For example, demonstrating multiple actions that
need to happen simultaneously is impractical using a regular
mouse and keyboard. Similarly, specifying a set of actions
that can be performed in any order, requires demonstrating
all possible permutations. To address these challenges, and
provide a higher ceiling than is possible with demonstration
alone, Pulsation augments widgets and the demonstrated ac
tions with dialogs that allow fine-tuning of specific properties
(Figure 2).

At the same time, demonstrating actions in the context of vi
sual design elements calibrates the state of the input widget
to real world values that are present in the visual design. This
makes it possible, for example, to gauge a slider by demon
stration, or choose which state of a switch is high or low.

To define the behavior of electronically augmented paper de
signs, the Pulsation logic recorder supports if–then as well
as map–to rules as shown in Figure 1a. For if–then rules, a
set of recorded actions (output set) is executed when a set
of recorded conditions (input set) has been met. For map–to
rules, parameters of input set (e.g. the number of fulfilled ac
tions in the set) are continuously mapped to parameters of the
output set (e.g. speed with which the set of actions are exe
cuted repeatedly). Both if–then and map–to rules thus relate
an input set to an output set.

Input Sets
Input sets specify conditions that have to be fulfilled. In
put sets therefore consist of one or more conditions related
to input or output widgets. Three types of conditions are sup
ported by Pulsation: (1) Momentary input conditions, are true
for only a very brief amount of time, such as a pressing or re
leasing a push button. (2) Discrete state conditions are true
until the widget switches to another state e.g. the modes of a
switch, a discrete brightness value of an LED or the pressed
state of a push button. (3) Continuous range conditions are
true when the current value of a continuous input widget is
within a specified range, such as a specific range of a slider
or the volume range of a buzzer.

As shown in the walkthrough, Figure 3a gives an example
of an input set that is fulfilled when a push button is pressed
at the same time that an LED lights up. Essential here are
the timing options offered by input sets (Figure 3b). These
options allows one to specify conditions that need to be met
simultaneously, sequentially or in a random order. When tim
ing options are different for some conditions in the set, these
conditions are grouped in separate layers.

Using the conditions and timing options provided by input
sets, simple patterns of conditions can be recorded that need
to match with the incoming stream of events. Pulsation sup
ports two matching approaches: (1) The include matching
approach requires the stream of all incoming events to ful
fill the pattern of conditions specified in the input set. Other
events which do not fulfil any conditions in the set are also
allowed. (2) The exact matching approach, does not allow
events that do not fulfil any of the conditions in the input set.
Figure 11a shows an input set that uses the exact matching
approach in combination with the sequential timing option to
enforce end-users to press specific buttons in a certain order
without pressing other buttons in the mean time, thus realiz
ing a digits code slot.

Output Sets
Output sets consist of one or more output actions. Pulsa
tion supports two types of output actions: (1) Discrete out
put actions, such as lighting up an LED, setting the digit of a
seven-segment display or a monotonic tone of a speaker. (2)

Range output actions specify an output range that has be tran
sitioned. An optional time parameter can be specified by the
user. Examples include, fading an LED in or out or realizing
a count-down or count-up with a seven-segment display.

As already shown in Figure 2e, output sets allow to spec
ify delays between recorded actions. Besides this, the loop
construct offers the possibility to execute the set of actions
multiple times.

If–then Rules
One way to relate input to output sets with Pulsation is using
if–then rules. These rules allow to execute or stop/reset an
output set when all conditions of an input set are met. Or-
relations are indirectly supported using multiple if–then rules.
An existing output set can also serve as input set for another
if–then rule, thus allowing for nested rules.

Figure 11c-d, shows the if–then rule needed for realizing a
code slot. When the correct code is entered, in this case the
year of birth of the sender of the invitation card, the date of
the birthday party is revealed on a seven-segment display. The
invitation card is connected with bulldog clips to a Netduino.

When input sets solely consist of stateful conditions, i.e. Dis
crete state conditions and continuous range actions, it is often
desirable to undo all actions performed in the output set once
the conditions in the input set are not fulfilled. Specifying
all these “undo” if–then rules manually can become cumber
some, especially when widgets have many modes (e.g. ra
dio buttons). For example, turning the switch, discussed in
the walkthrough (Figure 2), to the on-state starts the game,
and thus the blinking of the LEDs. Turning it to the off-state
should turn off the LEDs. Pulsation automatically infers for
every if–then rule whether this undo is appropriate (i.e. if
the input set consist of only stateful conditions) and will then
suggest to automatically undo all state changes caused by this
rule when the input set is not fulfilled anymore.

Map–to Rules
Map–to rules allow for linear mapping of a derived parameter
of the input set to another parameter of the output set. For
example, mapping the volume of a microphone or speed with
which a push button is tapped to the number of LEDs that
light up or the frequency with which they blink.

Pulsation supports numerous derived parameters for both in
put as well as output sets. The mapping parameter can be
different for the input and output set, so many combinations
are possible.

•	 Value (only for input sets that consist of a single continuous
range condition and output sets that consist of only range
output actions): The current value in the range is used as
mapping parameter.

•	 Progress (only for input/output sets that consist of at least
two actions): As mapping parameter for input sets, the
number of fulfilled actions is used. As mapping parame
ter for output sets, a corresponding number of actions of
the set is executed sequentially.

Brightness LED 1 to: 100 Set Segment Display 1 to 2

Set Segment Display 1 to 6

Event Sequence 1 Progress Progress ExecuteEvent Sequence 2 Event Sequence 3Event Sequence 1

Brightness LED 2 to: 100

Brightness LED 3 to: 100

Brightness LED 4 to: 100

1 1Enable Abs Timing Loops

Button 1 Press

Button 9 Press

Button 8 Press

Button 9 Press

If ThenMap To

Enable Abs Timing Loops

Sequential Exactly MatchesSequential Exactly Matches

Button 1 Press

Button 9 Press

Button 8 Press

Button 9 Press

after

after

s

s

Buttons 1, 9, 8, 9 Pressed LEDs turn on

Check if correct
year entered

Seven-Segment
flashes “2”, “6”

a dcb

2.0

1.0

Figure 11. An invitation card with a code slot designed using PaperPulse: (a) Every time the user enters a correct number of the year of birth of the
sender, (b) one more LED lights up. (c) When all four numbers are pressed in the right order, (d) the date of the birthday party appears.

Figure 12. An interactive diet card to keep track of how much you eat.

•	 Repetition (only for input sets): The number of times the
conditions in the input set are fulfilled is used as mapping
parameter.

•	 Time (only for input sets): The duration that all actions in
the input set remain fulfilled is used as mapping parameter.

•	 Speed: As mapping parameter for input sets, the speed with
which the input set is repeated is used. As mapping param
eter for output sets, the actions in the set are repeatedly
executed at a certain speed.

Figure 11a-b shows how a map–to rule is used to visualize
the end-users’ progress while entering the code on the birth
day invitation card. Here the progress through the input set
(pressing buttons sequentially), is mapped to the progress of
different LEDs that light up. Figure 12 shows an interactive
diet card that helps end-users to track the number of portions
they consume of different food categories. A map–to rule is
used to map the number of times the +1 button is pressed
(repetitions) to the number of LEDs that light up (progress).

ARCHITECTURE AND IMPLEMENTATION
The design tool supported by PaperPulse, the Pulsation logic
and interpreter are implemented in .NET/C#. This section
describes the architecture and algorithms underlying the Pa
perPulse system.

Pulsation Interpreter
The Pulsation interpreter can execute recorded if–then and
map–to rules in our test and debug environment as well as
on microcontrollers. The implementation is consistent with
.Net Micro Framework specifications to ensure its portability

to microcontrollers, such as Netduino and Threadneedle. As
such, the results observed in the test and debug environment
of PaperPulse are always consistent with the output from the
microcontroller.

To get the recorded logic onto these microcontrollers, we gen
erate code with .NET CodeDOM that re-instantiates all ob
jects needed for the specified Pulsation logic. Once the mi
crocontroller starts, it runs the generated code and thus ini
tializes all logic. Afterwards, the microcontroller runs the
Pulsation interpreter every CPU cycle. The Pulsation inter
preter keeps track of timing information and states of widgets
over different cycles to ensure that the output is always cor
rect and independent of the speed of the microcontroller. The
current version of the Pulsation interpreter requires a least 26
kilobytes of memory.

The Pulsation implementation achieves a modular design that
is reusable and extensible by abstracting: (1) Widgets ac
cording to their input or output type to make the system
sensor-agnostic (e.g. whether an off-the-shelf slider, paper-
membrane slider or pull-chain slider is used, is irrelevant for
Pulsation). (2) Connection pins to support different micro-
controller platforms, such as Netduino and Threadneedle. (3)
Actions and conditions as discussed in sections Input Sets
and Output Sets.

Filtering Signal Noise
In contrast to the behaviour of widgets inside the design tool,
their physical counterparts are subject to noise which might
lead to undesired oscillations. PaperPulse mitigates this prob
lem by smoothing analog input signals. When analog signals
are discretized (e.g. for pull-chain radio buttons), hysteresis,
or double thresholding is used.

Generating Electronic Circuits
Similar to Midas [26], PaperPulse employs an auto-routing
algorithm to generate conductive traces that connect the pins
exposed by widgets to the pins of a microcontroller. We im
plemented a variation of the A* algorithm in which traces
can make junctions with other traces that connect to the same
pin. Our routing algorithm avoids other conductive traces as
well as the instructions that are printed. When the circuit is
non-planar however, the algorithm interrupts one of the inter
secting traces and leaves place for a zero-ohm SMD resistor,
which serves as a bridge.

Control pins of widgets can often be connected to multiple
pins on a microcontroller. This depends on the input or out
put signal that is required. For example, the anode of an LED
can be connected to any PWM pin. However, if binary output
suffices, a digital pin can be used. Our routing algorithm takes
this into account and first uses the specified logic to assign a
set of valid control pins to every widget. The algorithm then
selects those pins that maximize the number of widgets that
can be connected given the limited set of pins on the micro-
controller. Finally, it favors those pins which, when routed,
have the lowest number of intersections with other traces.

Generating Printable Pages
Although our design tool gives users the impression that the
final design consist of a single sheet of paper, every widget
adds content to multiple sheets (see section Design Chal
lenges). These sheets consist of conductive traces, visual de
sign elements, and instructions for attaching components, or
cutting, folding, and gluing of paper. Each type of instruction
has a unique style, such as dotted lines for cutting, dashed
lines for folding, and hatched regions for gluing.

Although every design consist of three sheets of paper, some
sheets (i.e. the top layer) also have information present on
the back of the paper while others require conductive as well
as non-conductive information on the same page. Therefore,
five PDF files are generated for every design using the PDF-
Sharp library6. The tutorial assists users to print these files
using the conductive inkjet printer, or a regular color printer
for non-conductive elements. Conductive traces are rendered
using vector graphics to preserve the quality and maximize its
conductivity. When content is printed on the back of a sheet,
PaperPulse automatically flips it to ensure correct alignment.
Regions of different layers that have to make contact to ensure
electrical connectivity are enlarged to compensate for possi
ble misalignments by the printer or user (e.g Z1 and Z2 in
Figure 8).

EVALUATION
To gauge the usability and utility of PaperPulse, we con
ducted a preliminary first-use study with four designers: a
multimedia, a graphical, and two product designers. Two par
ticipants had no prior experience in programming or electron
ics. The other two participants had some limited experience
with Arduino and programming. Every session lasted for 2.5–
3 hours. A video introduced the participants to the basic op
tions of PaperPulse. Next, a video tutorial for designing and
fabricating the diet card, shown in Figure 12, was provided.
For the first task, participants were instructed to replicate this
diet card using PaperPulse. For the second task, participants
had to design and conceive their own ideas in PaperPulse, and
reported on their experience with the system through a ques
tionnaire and interview.

All participants were able to design and assemble the diet card
in less than 45 minutes. Participants perceived the process of
assembling the design enjoyable and were satisfied with the

6http://pdfsharp.com

Figure 13. Designs made by a participant. (a) A voting meter for neigh
borhoods. (b) A tourist information map.

end result and reported that the outcome met their expecta
tions. One designer said he was “pleasantly surprised and the
whole fabrication process was like magic”.

After finishing the diet card, participants were enthusiastic to
make their own design and logic in PaperPulse. Two partic
ipants had very concrete ideas: one designed an interactive
placemat for restaurants, and the other designed interactive
city maps as shown in Figure 13: one to filter through points
of interest, and another to enable voting for specific neighbor
hoods (similar to [29]). The other two participants had more
abstract ideas (e.g. pressing multiple buttons to make LEDs
blink, and specify beeping patterns played by a buzzer) and
explored these using PaperPulse. During logic specification,
all participants used the simulator regularly, to check if the
rules they added behaved as expected. Since rules used by
participants were quite simple, errors were detected immedi
ately. We expect users to take advantage of the ‘Debug View’
for more complex rules. All participants could successfully
define and fine-tune the interactive behavior of their designs
with Pulsation.

According to the questionnaire and interview, participants felt
that PaperPulse supports a wide variety of widgets which
could even foster new design ideas. One participant sug
gested additional widgets that can be supported in the future,
such as 2D touch pads and stepper motors. During the limited
exposure to Pulsation, participants found map–to rules harder
to understand compared to if–then rules. However, everyone
recognized that the derived parameters supported by map–to
rules are very useful and provide a lot of flexibility.

The two participants who had experience with the Arduino
platform reported that they would be able to make the diet
card using other tools, such as breadboards and copper tape.
However, they noted that this would require more time and
skill and the result would probably not be as visually pleasing
as with PaperPulse.

Participants also identified several areas for improvement.
Firstly, participants found it hard to get a grasp on the dif
ferent options available in Pulsation. As suggested by two
participants, more comprehensive video tutorials would help
give a better idea of how the options can be used in different

http:6http://pdfsharp.com

scenarios. Secondly, participants preferred more visual in
structions (e.g. images or videos) during the assembly phase.

RELATED WORK
The work presented in this paper builds on fabrication tech
niques for designing electronic circuits and design tools for
sensor-based interactions.

Fabricating Electronic Circuits
Modular electronic construction kits, such as Little Bits [3],
.NET Gadgeteer [14], Phidgets [10], Calder toolkit [19] made
it easier and thus more accessible for non-experts to build
electronic circuits. To preserve the aesthetic and expres
sive qualities that traditional crafting materials provide [21,
22], researchers have investigated different techniques to in
tegrate flexible circuits directly into substrates using copper
tape [24], conductive ink [21], threads [22] or fabrics [23].
These techniques have been used for different purposes, for
example, to electronically augment pop-up books [23, 24],
design interactive invitation cards, posters and paper head
phones [28], and enrich origami and paper sculptures [25].
To ease and speed up the process of fabricating electronic cir
cuits, researchers explored various techniques, such as chem
ical sintering with off-the-shelf inkjet printers [18], cutting
copper foil with a vinyl cutter [26], drawing conductive traces
with a plotter [8], integrating circuits directly in the paper
making process [6], and by making adhesive [15] stickers
with integrated PCB’s available.

Although these efforts make it easier to fabricate electronic
circuits on materials such as paper, it still requires users to
have basic knowledge of electronics, something the test sub
jects in some of the previously discussed platforms acquired
through workshops [21, 24] and online tutorials [22]. Similar
to Midas [26], PaperPulse automatically generates electronic
circuits with step-by-step instructions to assist the assembly
process.

PaperPulse thus shares inspiration with Midas, but it offers
important contributions beyond this work. First, artifacts de
signed with Midas are not standalone systems and need to be
connected to a desktop computer at all times. Secondly, Mi
das only supports capacitive sensor pads. Also, the extensive
logic support in PaperPulse is not offered by Midas. Unlike
Midas, PaperPulse is not limited to planar circuits and pro
duces much smaller and less fragile circuits.

Design Tools for Sensors-Based Interactions
To make it convenient for programmers to work with
electronic components, researchers developed well-defined
programming interfaces for micro controllers [14, 21]
as well as for specific electronic I/O components [2, 10,
19]. Researchers have also developed various visual pro
gramming approaches to empower non-programmers make
sensor-based interfaces. Some of these approaches are
analogous to building blocks, such as ScratchForArduino7

and eBlocks [20]; other systems support basic functionalities
by analyzing handwritten keywords [4].

7S4A: Scratch For Arduino. http://s4a.categories

Instead of specifying logic visually or textually, program
ming by demonstration generates program logic under the
hood by observing examples. This approach has been used to
record simple keystrokes and mouse clicks and replay them
when an input event is recognized [17, 26]. Other systems
record higher dimensional signals, such as sensor data from
accelerometers [12] or cameras and microphones [7] and gen
eralize rules using machine learning techniques. To support
more complex sets of rules, demonstration techniques are also
used to define transitions in statecharts [13].

The logic supported by our programming by demonstration
approach, Pulsation, is closest in spirit to PICL [9]. Both Pul
sation and PICL support discrete as well as continuous events.
In contrast, Examplar [12] and d.tools [13] focus solely on
extracting discrete events from continuous input streams. As
such, there is no direct support for mapping a continuous in
put signals (e.g. a potentiometer) to a continuous output sig
nal (e.g. an LED). Although Pulsation is a software platform
and not a hardware platform as PICL, there are also impor
tant differences in logic: PICL only supports a single input
and output signal whereas Pulsation has extensive support for
defining time-related relations between multiple input or out
put signals. This makes it possible to specify that multiple
actions need to happen simultaneously, sequentially or after
a certain amount of time. Furthermore, Pulsation also allows
to map derived signals as explained in section Map-To Rules.

LIMITATIONS
PaperPulse has three limitations we feel are important to men
tion:

(1) Pulsation is not a general programming language (i.e. Tur
ing complete) that supports arbitrary data structures, func
tions and variables. We found one could use workarounds
(e.g. using the state of an LED as boolean variable) but these
come at the expense of simplicity.

(2) Although some widgets draw inspiration from pop-up
mechanisms, more extensive pop-up and origami techniques
can be integrated in the future to enable non-flat designs. Al
though the visual design and dimensions of paper-membrane
and pull-chain widgets can be customized, their overall shape
(e.g. shape of handle) is fixed. We envision a widget editor in
the future.

(3) The current version of PaperPulse does not optimize us
age of electronic components. Every widget needs to be ex
clusively connected to one digital or analog pin on the mi
crocontroller. Future implementations could optimize this by
supporting multiplexing strategies or by sharing pins among
output widgets that are in the same state at all times. For some
very simple designs, widgets could be operated using only a
battery, eliminating the microcontroller.

CONCLUSION AND FUTURE WORK
In this paper we presented PaperPulse, a design and fabrica
tion approach that allows designers to enrich traditional visual
designs on paper with electronics. In order to do so, Paper-
Pulse contributes a design tool, three families of interactive
widgets and a logic recording and demonstration technique

http://s4a.categories

Pulsation. PaperPulse supports the whole process from de
sign and specification of interactive paper to fabrication and
assembly. An informal evaluation with designers suggests
that our approach is viable and that designers are pleased with
the resulting standalone paper artifact. They were in particu
lar enthusiastic about the possibilities PaperPulse offers, i.e.
creating interactive paper designs, that were unavailable for
them before.

For enriching interactive paper designs further, we plan to
extend the circuit generation algorithm to allow even more
components to exist in a single design by incorporating mul
tiplexing strategies. We will also extend our widget families
to include more popup mechanisms and explore the possibil
ity to include a widget editor in our design tool to customize
paper widgets further.

ACKNOWLEDGMENTS
We thank Jo Vermeulen for the many useful discussions, Tom
De Weyer and Johannes Taelman for the technical advice,
Karel Robert for the illustrations used in the designs and Jo
hannes Schöning for the early feedback on this work. We also
thank the study participants for their time.

REFERENCES
1. Apitz, G., and Guimbretière, F. Crossy: A

crossing-based drawing application. In Proc. UIST ’04,
3–12.

2. Ballagas, R., Ringel, M., Stone, M., and Borchers, J.

istuff: A physical user interface toolkit for ubiquitous

computing environments. In Proc. CHI ’03, 537–544.

3. Bdeir, A., and Rothman, P. Electronics as material:

Littlebits. In Proc. TEI ’12, 371–374.

4. Block, F., Haller, M., Gellersen, H., Gutwin, C., and
Billinghurst, M. Voodoosketch: Extending interactive
surfaces with adaptable interface palettes. In Proc. TEI
’08, 55–58.

5. Carter, D. A., and Diaz, J. The Elements of Pop-up: A

Pop-Up Book For Aspiring Paper Engineers. Little

Simon, 1999.

6. Coelho, M., Hall, L., Berzowska, J., and Maes, P.

Pulp-based computing: A framework for building

computers out of paper. In Proc. CHI EA ’09,

3527–3528.

7. Dey, A. K., Hamid, R., Beckmann, C., Li, I., and Hsu,
D. A cappella: Programming by demonstration of
context-aware applications. In Proc. CHI ’04, 33–40.

8. Electroninks Inc. Paperduino 2.0 with circuit scribe.
http://www.instructables.com/id/
Paperduino-20-with-Circuit-Scribe.

9. Fourney, A., and Terry, M. Picl: Portable in-circuit

learner. In Proc. UIST ’12, 569–578.

10. Greenberg, S., and Fitchett, C. Phidgets: Easy
development of physical interfaces through physical
widgets. In Proc. UIST ’01, 209–218.

11. Grossman, T., and Fitzmaurice, G. Toolclips: An
investigation of contextual video assistance for
functionality understanding. In CHI ’10, 1515–1524.

12. Hartmann, B., Abdulla, L., Mittal, M., and Klemmer,
S. R. Authoring sensor-based interactions by
demonstration with direct manipulation and pattern
recognition. In Proc. CHI ’07, 145–154.

13. Hartmann, B., Klemmer, S. R., Bernstein, M., Abdulla,
L., Burr, B., Robinson-Mosher, A., and Gee, J.
Reflective physical prototyping through integrated
design, test, and analysis. In Proc. UIST ’06, 299–308.

14. Hodges, S., Scott, J., Sentance, S., Miller, C., Villar, N.,
Schwiderski-Grosche, S., Hammil, K., and Johnston, S.
.net gadgeteer: A new platform for k-12 computer
science education. In Proc. SIGCSE ’13, 391–396.

15. Hodges, S., Villar, N., Chen, N., Chugh, T., Qi, J.,
Nowacka, D., and Kawahara, Y. Circuit stickers:
Peel-and-stick construction of interactive electronic
prototypes. In Proc. CHI ’14, 1743–1746.

16. Holman, D., and Vertegaal, R. Tactiletape: Low-cost
touch sensing on curved surfaces. In Proc. UIST ’11
Adjunct, 17–18.

17. Hudson, S. E., and Mankoff, J. Rapid construction of
functioning physical interfaces from cardboard,
thumbtacks, tin foil and masking tape. In Proc. UIST
’06, 289–298.

18. Kawahara, Y., Hodges, S., Cook, B. S., Zhang, C., and
Abowd, G. D. Instant inkjet circuits: Lab-based inkjet
printing to support rapid prototyping of ubicomp
devices. In Proc. UbiComp ’13, 363–372.

19. Lee, J. C., Avrahami, D., Hudson, S. E., Forlizzi, J.,
Dietz, P. H., and Leigh, D. The calder toolkit: Wired and
wireless components for rapidly prototyping interactive
devices. In Proc. DIS ’04, 167–175.

20. Lysecky, S., and Vahid, F. Enabling nonexpert
construction of basic sensor-based systems. ACM Trans.
Comput.-Hum. Interact. 16, 1, 1:1–1:28.

21. Mellis, D. A., Jacoby, S., Buechley, L., Perner-Wilson,
H., and Qi, J. Microcontrollers as material: Crafting
circuits with paper, conductive ink, electronic
components, and an ”untoolkit”. In Proc. TEI ’13,
83–90.

22. Perner-Wilson, H., Buechley, L., and Satomi, M.
Handcrafting textile interfaces from a kit-of-no-parts. In
Proc. TEI ’11, 61–68.

23. Qi, J., and Buechley, L. Electronic popables: Exploring
paper-based computing through an interactive pop-up
book. In Proc. TEI ’10, 121–128.

24. Qi, J., and Buechley, L. Sketching in circuits: Designing
and building electronics on paper. In Proc. CHI ’14,
1713–1722.

25. Saul, G., Xu, C., and Gross, M. D. Interactive paper
devices: End-user design & fabrication. In Proc. TEI
’10, 205–212.

26. Savage, V., Zhang, X., and Hartmann, B. Midas:
Fabricating custom capacitive touch sensors to prototype
interactive objects. In Proc. UIST ’12, 579–588.

27. Schmidt, D., Ramakers, R., Pedersen, E. W., Jasper, J.,
Köhler, S., Pohl, A., Rantzsch, H., Rau, A., Schmidt, P.,
Sterz, C., Yurchenko, Y., and Baudisch, P. Kickables:
Tangibles for feet. In Proc. CHI ’14,

28. Shorter, M., Rogers, J., and McGhee, J. Enhancing
everyday paper interactions with paper circuits. In Proc.
DIS ’14, 39–42.

29. Vlachokyriakos, V., Comber, R., Ladha, K., Taylor, N.,
Dunphy, P., McCorry, P., and Olivier, P. Postervote:
Expanding the action repertoire for local political
activism. In Proc. DIS ’14, 795–804.

http://www.instructables.com/id/Paperduino-20-with-Circuit-Scribe
http://www.instructables.com/id/Paperduino-20-with-Circuit-Scribe

	Introduction
	PaperPulse
	PaperPulse Essentials
	Walkthrough: The Hungry Monkey Game

	Contribution
	PaperPulse Widgets
	Design Challenges
	Off-the-Shelf Widgets
	Paper-Membrane Widgets
	Pull-Chain Widgets
	Summary of PaperPulse Widgets

	Pulsation: Specifying Sensor Logic By Demonstration
	Input Sets
	Output Sets
	If–then Rules
	Map–to Rules

	Architecture and Implementation
	Pulsation Interpreter
	Filtering Signal Noise
	Generating Electronic Circuits
	Generating Printable Pages

	Evaluation
	Related work
	Fabricating Electronic Circuits
	Design Tools for Sensors-Based Interactions

	Limitations
	Conclusion and Future Work
	ACKNOWLEDGMENTS
	REFERENCES

